

 Table of
Contents

Enhydra XMLC™ Java™ Presentation Development

By David H. Young

Publisher : Sams Publishing

Pub Date : January 15, 2002

ISBN : 0-672-32211-0

Pages : 504

Enhydra XMLC Java Presentation Development is written for computer professionals,
with a special focus on application architects, Java Web application developers, and those
who are just ramping up on Java and are excited about immersing themselves into Web
application development.

Taking a task view wherever possible, this book is written to support those seeking a
more elegant, maintainable, and flexible mechanism for building Web application
presentations. While we spend some time introducing the Enhydra application server for
those who are new to the topic of application server development, this book is focused
primarily on the topic of Enhydra XMLC and how to use it to improve the lifecycle
requirements of your Web application.

http://www.informit.com/safari/author_bio.asp?ISBN=0672322110

Brought to you by ownSky!!

 ii

Table of Content
Table of Content .. i
Copyright... vi

Copyright ©2002 by Sams Publishing ... vi
Trademarks .. vi
Warning and Disclaimer ... vi
Credits... vi
Dedication ... vii

About the Author.. viii
Acknowledgments ... viii

Lutris Technologies... ix
Tell Us What You Think!.. x
Introduction... xi

Enhydra .. xi
Who Should Read This Book .. xi
Lutris Technologies, Steward of Enhydra.org.. xii
Servlet Programming .. xiii
Organization... xiii
About OtterPod Productions.. xiv
Conventions and Tools ... xv
Enhydra 3 Versus Lutris EAS 4 ... xv
Downloads... xv
The Book's CD... xvi

Chapter 1. Enhydra and XMLC .. 1
A Taste of Enhydra XMLC .. 1
Modern Three-Tier Application Design ... 4
A Fortuitous Decision: Going with XML (Eventually) .. 5
Enhydra Java/XML Application Server ... 7
Enhydra.org, the Open Source Project... 9
Open Source Delivers Wireless ... 12
Summary ... 12

Chapter 2. XMLC Development ... 13
Taking Control from HTML ... 13
Development Flow with XMLC ... 14
The Document Object Model.. 20
Resuming xmlc and the Development Phase .. 27
Loosely Coupled Development .. 29
XMLC for Servlet Programming ... 31
Internationalization ... 31
Device Independence in an XML World ... 32
XMLC Benefits.. 33
Summary ... 34

Chapter 3. Presentation Technologies.. 35
Publishing Frameworks for Adapting to the Future... 35
Model-View-Controller ... 37
Servlet Presentation Programming ... 39
JavaServer Pages.. 40
JSP Taglibs ... 43
Cascading Stylesheets.. 46
XSLT .. 48
Cocoon... 52
Final Comparative Discussion.. 53
Templates, MVC, and XMLC.. 57

 iii

Summary ... 59
Chapter 4. The ShowFloor ASP Application .. 60

Building a Device-Independent Application ... 61
The ShowFloor Application... 63
Essential UML... 65
Modeling the ShowFloor Application... 67
Summary ... 73

Chapter 5. Enhydra, Java/XML Application Server... 74
Enhydra and J2EE ... 75
Enhydra Application Framework Genesis .. 75
The Package Tour ... 77
Development, Runtime, and Deployment .. 80
Enhydra Multiserver ... 82
Building and Running ShowFloor .. 84
Enhydra Multiserver ... 92
Configuration Files ... 94
Administration Console ... 98
Enhydra Director .. 99
The Enhydra Application Framework.. 100
Enhydra Services and the EAF Runtime.. 103
Enhydra DODS... 108
Debugging an Enhydra Application ... 112
Deploying Enhydra Applications .. 114
Summary ... 115

Chapter 6. XMLC Basics ... 116
HTML in an XML World ... 116
Selected XML Basics... 120
Selected HTML Basics .. 122
Selected DOM Topics ... 124
XMLC Features and Functions .. 129
Working with Templates.. 135
How XMLC Constructs a DOM Class ... 136
Enhancing Performance with LazyDOM .. 138
Summary ... 139

Chapter 7. The xmlc Command.. 141
Syntax and Formats... 141
The options.xmlc Format.. 142
xmlc Command Options .. 143
Some Runtime Options ... 150
Auto-Recompilation and Auto-Class Loading.. 152
Server-Side Includes ... 156
XMLC Metadata ... 157
Building with Enhydra make Files.. 159
Summary ... 160

Chapter 8. HTML Presentations... 161
Leveraging HTML DOM Implementation.. 162
Preparing for Examples... 163
Common DOM Operations ... 165
Cloning and Templates ... 167
Different Strokes... 172
Building Tables ... 174
Working with Stylesheets.. 182
Working with Forms and Controls ... 184
Working with JavaScript.. 203

 iv

Generating Output ... 204
XHTML... 206
Summary ... 208

Chapter 9. Presentation Strategies ... 209
A Presentation Architecture.. 209
Assembling Composite Views.. 214
Interface-Implementations for ASPs and Skins... 222
Internationalization ... 226
Integrating Data Binding with XMLC ... 229
Summary ... 233

Chapter 10. Servlet Web Applications .. 234
Servlets and Web Applications .. 234
Portable Enhydra XMLC ... 236
Building Web Application Servlets with Enhydra 3 ... 239
Constructing the VendorCategory XMLC Servlet ... 243
Deploying XMLC WARs on Lutris EAS 4 ... 247
Ant, the Java/XML Alternative to make... 250
Deploying an XMLC WAR on BEA WebLogic ... 252
Summary ... 257

Chapter 11. Wireless Markup Presentations.. 258
Wireless Domains .. 258
Perusing the WML Language... 260
The WML Development Environment, Kinks and All.. 263
WML Template Generation with xmlc.. 265
Device Detection .. 266
The mySFA Vendor Notes Application ... 267
VoiceXML .. 271
Summary ... 276

Chapter 12. Client-Server Development with J2ME and Flash............................... 278
Java 2 Micro Edition .. 278
XML for J2ME Client/Server Communication .. 280
Enhydra kXML .. 281
The ShowFloor Admin Application .. 282
Building a J2ME Application ... 287
Flash... 288
Dynamic Graphics with SVG and XMLC .. 290
Summary ... 296

Chapter 13. Barracuda Presentation Framework.. 297
XMLC: Where the Value Is ... 297
A Presentation Framework for XMLC ... 298
A Collection of Capabilities ... 300
Example: VendorSpotlight .. 305
Directives... 311
Localization ... 313
Summary ... 316

Appendix A. XMLC Command Line Options .. 318
xmlc Command Options .. 318

Appendix B. XMLC Metadata ... 354
<compileOptions/> Elements.. 354
<inputDocument> Elements... 355
<parser> Elements ... 356
<html> Elements .. 356
DOM Editing Elements .. 358
<documentClass> Elements... 359

 v

<javaCompiler> Elements ... 361
Appendix C. The XMLObjectImpl Class.. 363

Methods ... 363
Appendix D. The Base Presentation Object... 377

The Base Presentation Object ... 377
Appendix E. References.. 384

 vi

Copyright

Copyright ©2002 by Sams Publishing

FIRST EDITION

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of the information contained herein. For
information, address Sams Publishing, A division of Macmillan Computer Publishing, 201 W.
103rd St., Indianapolis, IN 46290.

Library of Congress Catalog Card Number: 2001090937

04 03 02 01 4 3 2 1

Interpretation of the printing code: the rightmost double-digit number is the year of the book's
printing; the rightmost single-digit, the number of the book's printing. For example, a printing
code of 98-1 shows that the first printing of the book occurred in 1998.

Composed in Function Condensed, AGaramond and MCPdigital by Macmillan Computer
Publishing

Printed in the United States of America

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an "as is" basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from the use of the CD or
programs accompanying it.

Credits

Executive Editor

Michael Stephens

Development Editor

 vii

Tiffany Taylor

Managing Editor

Matt Purcell

Project Editor

Andy Beaster

Production Editor

Seth Kerney

Proofreader

Harvey Stanbrough

Indexer

Tina Trettin

Media Developer

Dan Scherf

Technical Editor

Chad Fowler

Team Coordinator

Pamalee Nelson

Interior Designer

Anne Jones

Cover Designer

Aren Howell

Page Layout

Julie Swenson

Dedication

To the true loves of my life: Kathy, Amanda, Nicole, Claire, and Carolyn. Dorothy, Leland, and Al
are very proud indeed.

 viii

About the Author
David H. Young is Chief Evangelist for Lutris Technologies in Santa Cruz, California, for whom
he writes technical papers, gives speeches on wireless and Web development, and serves as editor
of the Lutris Enhydra Journal. David has penned magazine articles for publications including
ComputerWorld, WebTechniques, and Network Telephony.

As the father of three daughters, he believes in going overboard with all his efforts whenever
possible. So, in late 1995, he left his engineering career at The Santa Cruz Operation at the behest
of colleagues Paul Morgan and Michael Browder, the original founders of Lutris Technologies.
There he started by serving as president for 2 1/2 years, leading some of the consulting projects
that spawned Paul's vision of a consultant's portable toolbox, later dubbed "Enhydra" by Lutris'
Yancy Lind. David was instrumental in the proposal to turn this Lutris technology into a full-
blown open source project.

After collecting his Bachelor of Science degree in Earth Sciences from the University of
California at Santa Cruz, David eventually landed a job at Amdahl Corporation in 1983 where he
learned PL/I. After he wrote a program that shaved days off the process of re-routing circuit
boards, Amdahl incorporated it into their production software and had no choice but to promote
David to the role of full engineer. From there, David joined SCO in 1987 where he not only met
Paul, Michael, and John Marco, but was also taken under the wing of Tcl guru Mark Diekhans,
who eventually joined Lutris and developed Enhydra XMLC.

Working for SCO gave David the opportunity to see the world as an X/Open Systems
Management Working Group representative and establish his own niche as Product Manager for
Future Technologies. Earlier, as an SCO Development manager for SCO's Motif scripting tool,
Visual Tcl, David was inspired by its champions Mark and Paul to write The Visual Tcl Handbook
(Prentice Hall). Unfortunately, this great technology was never open sourced, limiting its access
and evolution. Enhydra and Lutris have given him the opportunity to make amends.

David lives in Aptos, California with his wife Kathy, daughters Amanda, Nicole, and Claire, and
cat Autumn.

Acknowledgments
Before Apple Computers introduced Silicon Valley to the world, Cupertino was a community of
apricot farmers and blue collar workers. My Dad, Leland Young, took delight as president of the
Peninsula Machinists and Aerospace Workers Union, fighting for asbestos-free working
conditions after a long day of buffing brake pads and cleaning re-built carburetors with solvents.
I've always wondered why people I work with take computers so seriously. They don't crack the
skin of your hands or make you wear long-johns to brave a long day with the garage doors open to
let the exhaust out. But I have come to stand in awe of the people I'm about to acknowledge. Their
hard work, imagination, creativity, and drive to contribute great technology to the world makes me
proud to be associated with them and a great open source effort. With their help, this book
represents something that I want to give back to my Dad for buffing all those brake shoes.

The names listed here represent people who have in some way made this book possible or have
affected its quality. These folks either sat down with me to explain concepts, or contributed

 ix

content for the book through the Enhydra.org mailing list. Others were simply inspirational and
supportive beyond the call of duty.

First, my early Lutris brothers Paul Morgan, Michael Browder, Mark Diekhans, John Marco,
Andy John, Kyle Clark, and Shawn McMurdo all made this possible with their vision and early
implementation of Enhydra and Enhydra XMLC.

Christian Cryder, Matt Schwartz, Bill Karwin, Eric Friedman, Xavier Stonestreet, Rand
McKinney, Joseph Shoop, Jeff Bean, Glen Carl, Bob Bourbonnais, Lisa Reese, Aidan Hosler,
Russ Duckworth, Mark Beaulieu, Christopher Reed, Mike Gardner, Michael Maceri, and Peter
Darrah are the highly motivated and equally clever people who helped me conceptually and
motivationally.

Lutris management gave me all the space I needed to feel good about getting this book completed.
And my colleagues were always supportive. Yancy Lind, Keith Bigelow, and Mr. EAS, Klaus
Krull. Gillian Webster originally inspired me to go for it.

Moral support came from Dennis Chatham, Daryl Tempesta, Lynda Hall, Nanette Henneuse (!),
Jay Felkins, Scott Kleinberg, Lisa Welch, Linda Ritchie, and Lupe Adame.

And thanks to my colleagues in the Enhydra.org community: David Li, Chad Fowler, Nick Xidis,
Dave Peckham, David Wood, Richard Kunze, Kevin Austin, William G. "Enhydra Rocks"
Thompson, Jr., Mark Stang, Paul Gresham, Ian Purton, and David McCann.

It's no wonder Sams Publishing's Michael Stephens is so prolific. He's a genuinely curious and
nice human being, and his team of editors reflects his good nature. Thanks to Seth Kerney,
Andrew Beaster, Chad Fowler, and a special thanks to the gentle "voice in the dark," Tiffany
Taylor.

Special thanks to Lutris' Robert Sese for losing a weekend to give me a hand with the Zeus stuff.
And, of course, Brett McLaughlin as my co-Enhydra evangelist for delivering Zeus and
motivating me to come anywhere close to his wonderful Java books.

There are many people about whom I can say, we would have never gotten Enhydra out the door
without their involvement. Russell "Rusty" Berg is one of them. It was his early contributions of
wisdom and encouragement in the early Lutris team that gave us the ability to transition from the
hairy edge of subcontracting to a prime contractor. Looking back, I don't know how we would
have made that critical transition without his faith and commitment.

My daughter Amanda is the hero in my life. For the past 16 years, she has supported the
wanderlust and hyperactive antics of a hopelessly romantic father. She's paid the price, and I thank
her for loving me through all of the balloons I've ridden.

My beautiful wife Kathy has supported me throughout, reflecting the love and passion that I
always knew could be a part of daily life. And Nicole has become my best friend. I am looking
forward to the years to come.

Development took place on a Windows 2000 laptop so I could write at the Red Room, Capitola
Book Cafe, Seascape Resort (thanks for the great service from Assita, Rory, and Leigh-Ann),
London, and the Aptos Library.

Lutris Technologies

http://enhydra.org/
http://enhydra.org/

 x

This book is about open source Enhydra. But Enhydra wouldn't have been here without a core
group of Lutris engineers and executives, so let me acknowledge Lutris for a few paragraphs
before I enter a fairly agnostic discussion about Enhydra from here on out. About six years ago,
November 1995, I came to Lutris, then "The Information Refinery," to lead training and marketing,
later to become President, and after replacing myself with a real President, Yancy Lind, have
served as Chief Evangelist for the past three years.

One of the keys to establishing and perpetuating a successful open source project is to seed that
project with a great technology.

One way to approach a new product is to sit in a room and think of great architectures, talking to a
few customers, then toss a coin. Another is to simply hire great developers, who happen to be
great people, and trust their experience and sense of commitment. Then do major consulting work,
and find out "the truth" from those who will eventually reflect your customer.

It started with a hard-nosed and very, very creative architect, Lutris CTO Paul Morgan,
acknowledging the need for a pure, highly adaptive architecture to support our consulting business.
We did something very good—hiring solid software engineers. People who appreciated testing,
version control systems, and elegant designs. We lucked out.

Under the umbrella of an evolving consulting business, Paul Morgan, Mark Diekhans, John Marco,
Andy John, Kyle Clark, and Shawn McMurdo applied their UNIX server and networking
backgrounds together to lay the foundation for a highly extensible, pragmatic architecture that
started with a simple but elegant way to lay out source code.

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we're doing right, what we could do better, what areas you'd like
to see us publish in, and any other words of wisdom you're willing to pass our way.

As an Executive Editor for Sams Publishing, I welcome your comments. You can fax, e-mail, or
write me directly to let me know what you did or didn't like about this book—as well as what we
can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and
phone or fax number. I will carefully review your comments and share them with the author and
editors who worked on the book.

Fax: 317-581-4770
E-mail: feedback@samspublishing.com
Mail: Michael Stephens, Executive Editor

Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

mailto:feedback@samspublishing.com

 xi

Introduction
It was almost eight years ago on a balmy Southern California January at the beautiful La Jolla
Shores Hotel. And there we were. Indoors. Arguing the merits of assorted remote procedures
called APIs: Sun Microsystems' ONC RPC versus everyone elses'. The occasion was an X/Open
Systems Management Working Group meeting. The task before us was to select a standard RPC
API. With it, we could establish a base platform upon which we could further accept
implementations that would form the basis for a standard management platform. But a resolution
never came. The "RPC Wars" were too fraught with N.I.H. (Not Invented Here) and things
political. By week's end, there was no resolution or progress. The folks from the east coast would
have to head back and dig their way out of the airport parking spots that they had to dig into just to
park a few days before. The Northridge Earthquake that had thrown me out of my bed the night
before the meeting began failed to assert itself as a good omen that things were about to get
shaken up. Instead, it was the same old standards process, guided by large companies, politics, and
feature creep. (That is, should we boil the oceans or solve a more narrow issue?)

Then, to paraphrase the prophetic bumper sticker, "a miracle happened." A cool little desktop
client called a browser led the world to vote Internet. Suddenly, all the wannabe distributed
computing standards—OSI, Novell, Microsoft, and DCE—were looking suspect. What's more, the
desktop standard Microsoft was suddenly vulnerable.

I am a refugee of the old-style standards process and I couldn't be happier that the Internet is here
to stay. Today, there is a new standards mechanism, powered by a 25-year old Internet mechanism,
dubbed only a few years ago by Eric Raymond as open source. Thanks in part to the open source
process, the standards process is now more empowered. W3C.org is a great example. Wisely, they
use the open source community to refine and process standards specifications through worldwide
implementations. We all benefit when standards-defining activities are forged on the anvil of
world application.

Enhydra

Since its introduction as an open-source technology on January 15, 1999, Enhydra has steadily
expanded its reach as a favorite set of technologies in the application server market.

The first audience to appreciate its value were the consultants of the world, represented by
companies like Tivano in Germany, I-exposure of the US, Plugged In Software of Australia and
Digitalsesame of Taiwan. Drawn by Enhydra's elegant and pragmatic architecture, simple
development philosophy, and well-organized source code, these consultants, and eventually,
developers of corporate IT, have taken Enhydra from its simple application server roots to a broad
set of open source technologies for areas Lutris never anticipated, namely voice and wireless
development.

This book is about perhaps the most popular of the Enhydra projects—Enhydra XMLC for the
development of wired and wireless Web presentations. Enhydra XMLC is powering Web sites
powered by open source Enhydra as well as commercial application servers, including BEA
WebLogic. As you'll soon read, Enhydra XMLC appeals as much to project managers and
presentation architects as it does to presentation developers.

Who Should Read This Book

http://w3c.org/

 xii

This book is written for computer professionals, with a special focus on application architects,
Java Web application developers, and those who are just ramping up on Java and are excited about
immersing themselves into Web application development.

Taking a task view wherever possible, this book is written to support those seeking a more elegant,
maintainable, and flexible mechanism for building Web application presentations. While we spend
some time introducing the Enhydra application server for those who are new to the topic of
application server development, this book is focused primarily on the topic of Enhydra XMLC and
how to use it to improve the lifecycle requirements of your Web application.

A modest knowledge of the Java language is assumed, but key supporting topics, such as XML
and DOM development, are introduced for those who are new to them. There is even a chapter
dedicated to thinking out the requirements of an application based on an application service-
provided (ASP) model. For those who are already well-versed in presentation frameworks, a
technical overview of XMLC with other presentation technologies is provided.

For those who are curious about Enhydra XMLC and Enhydra in general, we've presented
sufficient information to appreciate its value and unique approach to building dynamic, Web-
based presentations for browsers, mobile devices, and even good old telephones when taking
advantage of freely available voice portal services from TellMe or Voxeo. More importantly, it is
also written to demonstrate how to build Web applications and some of the strategies you could
employ.

We've also used this opportunity to explain and compare supporting concepts such as XML and
HTML, explaining their historical differences as well as their basic reasons for being. The use of a
pronounced demonstration application modeled after a conference showfloor that you'd encounter
at any major computer show is targeted at the reader who is just embarking on the topic of
building Web applications. It's used as a means for exploring the process of how you might
integrate different display devices into the overall application.

Enhydra definitely carries a Unix flavor, although the Enhydra Kelp project has done a lot to
integrate Enhydra with popular Windows Interactive Design Environments, such as JBuilder and
Forte. In order to focus more on the xmlc command itself, we have chosen to use RedHat's
Cygwin tools to emulate a Unix command line environment for the Windows environment.

Finally, I love new innovations. So, at the end of the book, I leave you with an introduction to
Barracuda, which was a lot of fun to discover and write about. The promise of this new
technology is incredible.

Lutris Technologies, Steward of Enhydra.org

Enhydra.org, one of the world's most popular and well-known open source efforts, is the result of
the efforts of the Java developers at Lutris Technologies. After a great deal of preparation, Lutris
introduced Enhydra.org on January 15, 1999. The bootstrapping technology of Enhydra.org was
Enhydra, a Java application server, developed by Lutris' consulting organization and used for
engagements with many dot coms as well as large IT organizations, including the Kinko's
Corporation.

The emergence of the popular Internet has been a blur to most of us. Few are aware that it wasn't
until the move by Netscape to define the Mozilla license for the Netscape browser when the term
open source was coined by Eric Raymond.

http://www.enhydra.org/
http://www.enhydra.org/
http://www.enhydra.org/

 xiii

Lutris was no stranger to open source. Most of Enhydra's early development was conducted on
FreeBSD. Mark Diekhans, the creator of Enhydra XMLC, was well-known in John Ousterhout's
Tcl community, having co-authored the TclX extensions, influencing the core Tcl APIs. He and
his Lutris colleagues knew what open source was about, what its value was, long before IDC and
others started trying to explain this emerging concept to the business community.

Lutris also gives Enhydra its business flavor. Noted earlier, Enhydra was developed in support of
professional consulting engagements. One of the business considerations that drove Enhydra's
design was to make it easily adaptable to the favorite tools of Java developers.

Today, despite the fact that Lutris is still very much a leading force behind this unique open source
effort, Enhydra has a life of its own. Much of the scope of Enhydra.org will be covered in Chapter
1, "Enhydra and XMLC."

Servlet Programming

Enhydra 3 features two types of servlet development. The first type, Enhydra Application
Framework (EAF; more commonly referred to as the superservlet), was developed by Lutris in
advance of the introduction of the standard servlet programming. The other type, of course, is Sun
Microsystems' standard servlet development based on servlet 2.2. As we'll explain in Chapter 10,
"Servlet Web Applications," you can use Enhydra 3 to develop and generate a WAR file, then
deploy it with a few clicks of the mouse in a BEA WebLogic and Lutris EAS 4 enterprise-class
application server. Or you can simply download the XMLC-only package from xmlc.enhydra.org
and use XMLC as a part of your native WebLogic development environment. With some
exceptions, we will be using Enhydra EAF-style servlet programming, characterized by
presentation objects. As you'll quickly see, EAF looks very much like standard servlet
development. The two styles of programming are so similar that servlet programmers won't be put
off.

Organization

This book was written to give you a gut feeling of what Enhydra XMLC is all about. To support
this goal, there are numerous notes that explain the background on what motivated certain features
of XMLC. If you are new to Web development, then we encourage you to focus on Chapters 1–9,
which explain the basics of XMLC, its supporting technologies, and how they relate to other
technologies that address presentation development. Any experienced Web developer can pick and
choose chapters depending on, for example, her level of experience with DOM programming. The
latter third of the book should be interesting for those exploring wireless, voice, and Flash
development, as it is driven by data shipped from a back-end application server. We encourage
everybody to read the last chapter on Barracuda, a very promising next step in the evolution of
XMLC to a full presentation framework.

Chapter 1, "Enhydra and XMLC"—High-level introduction to Enhydra XMLC and the
Enhydra.org family of technologies.

Chapter 2, "XMLC Development"—A first introduction to the experience of XMLC development,
with a walkthrough of development examples. The concept of DOM development is introduced.

http://enhydra.org/
http://xmlc.enhydra.org/
http://enhydra.org/

 xiv

Chapter 3, "Presentation Technologies"—A survey of presentation technologies, including XSLT,
JavaServer Pages, Servlet Development, and Cocoon. A comprehensive set of observations on the
comparative strengths of XMLC concludes this chapter.

Chapter 4, "The ShowFloor ASP Application"—An application reflecting an application server
provider business model is introduced. The concept of UML design is introduced. The rest of the
chapter speculates on the potential uses of wireless technology for enhancing the features and
attractiveness of this fictitious application.

Chapter 5, "Enhydra, Java/XML Application Server"—A presentation technology is useless
without an application server behind it. This chapter introduces Enhydra and its architecture for
the development of both superservlets, as well as standard Web application servlets. Enhydra
DODS for creating Java object-to-RDBMS mappings is also introduced.

Chapter 6, "XMLC Basics"—The basic elements of XMLC development are introduced, with a
focus on comparing and contrasting the XML and HTML markup technologies and how they feed
into DOM development. The remainder of the chapter focuses on the value that XMLC brings to
DOM development.

Chapter 7, "The xmlc Command"—All of the aspects of the xmlc command for generating DOM
templates and the features of runtime XMLC programming are addressed here.

Chapter 8, "HTML Presentations"—An introduction to the unique nature of HTML development
with XMLC. Template cloning, table construction, and DOM operations are covered. A
questionnaire application, VendQuest, is introduced to illustrate template-driven forms and HTML
control development.

Chapter 9, "Presentation Strategies"—More complex XMLC development situations are addressed.
Strategies for designing and implementing composite views introduce the ability to import nodes
and leverage the XMLC -ssi option. The VendQuest example is enhanced with the introduction
of Zeus XML data binding, another Enhydra.org open source technology.

Chapter 10, "Servlet Web Applications"—A focus on Enhydra XMLC's ability to address standard
servlet programming. A WAR built with Enhydra is migrated to both the Lutris EAS and BEA
WebLogic J2EE application servers.

Chapter 11, "Wireless Markup Presentations"—Introduces the concepts and strategies behind
XMLC's support for WAP's WML language. This chapter also introduces VoiceXML and how
XMLC can drive voice presentations through voice portals.

Chapter 12, "Client-Server Development with J2ME and Flash"—Introduces the concepts and
capabilities of these smart client presentations, as driven by XML and generated and consumed by
Enhydra XMLC. An introduction to using XMLC with the new Scalar Vector Graphics (SVG),
the XML standard, is presented.

Chapter 13, "Barracuda Presentation Framework"—An introduction to an impressive new open
source presentation framework constructed on top of Enhydra XMLC. Barracuda introduces a
Swing-like component view of DOM development.

About OtterPod Productions

OtterPod Productions is this book's model ASP company. The Web site http://www.otterpod.com
is real. It is operated by the author.

http://enhydra.org/
http://www.otterpod.com/

 xv

You can find the following at www.otterpod.com:

• A working version of the ShowFloor application, source code and all.
• Notes and updates relevant to the book.
• Announcements about Enhydra XMLC, as learned by the author.
• Hints/Tips as acquired by the author.
• A page for registering your comments, feedback, and suggestions for the book.

The entire site is a combination of static HTML and dynamic pages powered by open source
Enhydra XMLC and the Enhydra Java/XML Application Server.

The www.otterpod.com site is wireless friendly! That's because the index page, index.po, is an
Enhydra presentation object whose chore it is to detect the device type that is accessing the site.
Why access this site with your i-mode phone? That will be a surprise, but a well-formatted
surprise delivered in the appropriate markup language for your mobile device.

Conventions and Tools

Unless indicated otherwise, all of the commands illustrated in this book are given in standard
Linux/Unix form. What good does this do for those using Windows environments? I recommend
downloading the Cygnus tools, a UNIX shell emulation environment.

Cygnus can be downloaded from http://sources.redhat.com/cygwin/.

If you are looking for a Java IDE environment to simplify Enhydra servlet and Enhydra XMLC
development, be sure to check out http://kelp.enhydra.org. This open source project provides the
tools needed for the integration of Enhydra technology into JBuilder 4 and 5, as well as Sun
Microsystems' Forte.

Enhydra 3 Versus Lutris EAS 4

Enhydra XMLC development is enhanced by the inclusion of sub-DOM class implementations
that address both HTML and WML. To put their value simply, they support a set of methods that
help insulate the developer from raw DOM API programming. Having said that, there's nothing
about XMLC programming that requires the use of per-XML language DOMs. If the XMLC
compiler can coerce your targeted markup file into a DOM, you're in business. You just need to be
comfortable with DOM API development.

If you want to take advantage of the sub-DOMs available for cHTML (the i-mode standard),
XHTML (the new W3C.org standard), or VoiceXML 1.0 (also from W3C.org), then you have a
choice of either purchasing Lutris Enhydra 3.5 from Lutris Technologies, or using the 45-day
evaluation copy of the Lutris EAS 4 J2EE Application Server that's included with this book. This
is not a requirement to enjoy the chapters that focus on wireless and voice topics.

Downloads

http://www.otterpod.com/
http://www.otterpod.com/
http://sources.redhat.com/cygwin/
http://kelp.enhydra.org/
http://w3c.org/
http://w3c.org/

 xvi

If, like me, you want to assure yourself of working with the latest and the greatest, everything on
the book's CD can be downloaded from a number of locations.

• http://enhydra.enhydra.org— The open source home for the Enhydra 3 Java/XML
Application Server.

• http://xmlc.enhydra.org— The open source home for the Enhydra XMLC.
• http://barracuda.enhydra.org— The open source home for Barracuda, a presentation

framework built on top of the XMLC layer.
• http://kxml.enhydra.org— The open source home for Stefan Haustein's micro XML

parser, key to bringing J2ME and Enhydra XMLC together for a client/server relationship.
• http://zeus.enhydra.org— The open source home for Zeus, a data binding facility for

marshalling and unmarshalling XML into and from Java logic.

The Book's CD

A CD is included with this book to simplify the chore of putting all the elements together that
you'll need. All of the examples presented in this book are available on the accompanying CD.

• Open Source Enhydra 3 Application Server
• Open Source XMLC.zip (Standalone portable XMLC environment)
• BEA WebLogic 6.1
• RedHat Cygwin Tools
• Open Source Enhydra Barracuda 1.0
• Lutris EAS 4.1

Be sure to read the index.html file for instructions on how to install each component.

http://enhydra.enhydra.org/
http://xmlc.enhydra.org/
http://barracuda.enhydra.org/
http://kxml.enhydra.org/
http://zeus.enhydra.org/

 1

Chapter 1. Enhydra and XMLC
IN THIS CHAPTER

• A Taste of Enhydra XMLC
• Modern Three-Tier Application Design
• A Fortuitous Decision: Going with XML (Eventually)
• Enhydra Java/XML Application Server
• Enhydra.org, the Open Source Project
• Open Source Delivers Wireless
• Summary

The Enhydra eXtensible Markup Language Compiler, or XMLC, is a highly portable
XML/HTML software application. Sometimes referred to as an XML/HTML processor, XMLC
makes it possible for Java applications to negotiate with a wide range of devices, from cell phones
to browsers or other applications that speak languages based in XML or HTML. It can be used
with any Java application server, including open source Enhydra or BEA WebLogic. We will use
the Enhydra application server as the backdrop for our XMLC journey, with a later discussion on
how to use XMLC with other Java application server platforms.

XMLC is now widely used to enable modern Java/XML application servers to serve many flavors
of devices, both established and emerging. Browsers, cell phones, auto navigational units, home
appliances, and rotary phones can be driven by XML languages. Those languages and protocols,
XML, HTML, XHTML, WML, J2ME, and VoiceXML, are all native to the XMLC environment.

By the end of this book, you will know how to build wired and wireless applications with Enhydra
and Enhydra XMLC. You will also know how to incorporate Enhydra XMLC in other application
servers.

By the end of this chapter, you will have a solid picture of where Enhydra XMLC came from,
what problems it was built to solve, and, at a simple level, how it works. You'll also understand
why it's a unique strategy for supporting disparate display devices and applications with minimal
changes to existing code.

A Taste of Enhydra XMLC

Enhydra XMLC is a technology that was designed to enable Java logic to generate a markup
language in a dynamic, loosely-coupled manner. From the point of view of the designer and
developer, there is never an overlap of XML or HTML markup with Java logic.

Most presentation technologies permit the markup language syntax to "bleed" through to the
programming logic. In fact, in most cases, the presentation technologies or strategies permit the
structure of the markup page to dictate the flow of the application.

XMLC puts Java in full control of markup language manipulation. By leveraging the Document
Object Model, or DOM, as defined by the World Wide Web Consortium (W3C) at w3c.org,
XMLC presents a page composed of HTML, WML, or VoiceXML as an object to the Java
application. By doing this, Java is 100% in control of the flow of the presentation. The markup
language is now simply a resource that has been abstracted from Java logic. XMLC presents the
markup page and its content as an object. As an object, the page is manipulated by Java logic.

http://w3c.org/

 2

For Enhydra XMLC, the markup language only needs to reflect one common ancestor: XML.
HTML, developed before the emergence of XML, is treated as a special case. The comparison
with JavaServer Pages (JSP) design and development is inevitable and appropriate. After all,
XMLC was designed as an alternative to the strategy used by JSP and Active Server Pages (ASP)
of embedding programming logic, directly or indirectly, inside a markup language. The reasons
for this are varied, many of which we'll explore in Chapter 3, "Presentation Technologies." Before
we review the reasons, let's take a first look at how XMLC works.

Note

HTML is anything but XML-compliant. Netscape and Explorer browsers cannot use generic
XML parsers to process HTML because it breaks some key XML language rules. Some of
those violations include the inclusion of presentation information (for example, <bold> and
ill-formed elements, such as
). We'll visit some of these rules in Chapter 6, "XMLC
Basics."

With XMLC, the convenient way to access markup content from Java logic begins with the use of
id attributes, as shown in the following series of figures. XML id attributes are used to uniquely
identify a particular element within a markup page. Figure 1.1 shows how XMLC leverages an id
attribute in an HTML table cell to identify a targeted area of content for replacement by
dynamically generated content during runtime. Note the complete absence of Java scriptlets or the
use of custom tags or elements in this example (or anywhere else in this book).

Figure 1.1. Using the id attribute to identify markup content for dynamic update.

Figure 1.2 shows how XMLC compiles the mocked-up HTML page into a DOM object. This is
one of two products generated during this process. The DOM becomes a malleable data structure
or template that is loaded, manipulated, and converted back to HTML during runtime execution.
As with XML and HTML, the DOM is defined by a W3C specification at w3c.org.

Figure 1.2. Converting an HTML page to a DOM source tree.

http://w3c.org/

 3

The first two figures represented the "development phase" of the sample Web presentation. In
Figure 1.3, a method call is made during runtime using the other XMLC compilation output, one
of the automatically constructed Java methods. It doesn't take long to figure out how the id value,
PatientName, was used to construct the method. This convenience method makes it a
straightforward process to update the DOM result tree with the new, dynamically generated
content. The call to writeDOM() completes the runtime process by streaming the reworked
contents of the updated DOM tree back to the client as HTML.

Figure 1.3. Using the XMLC-generated convenience method to create a dynamically
transformed DOM result tree.

If you're a JSP or Cocoon programmer, I'm sure this highly simplified flow of XMLC processing
illuminates a different approach to generating dynamic content. Hopefully, this modest exercise
has illustrated how XMLC converts markup pages to potentially device-specific DOM templates
that are loaded into memory, where they can be manipulated at runtime to generate dynamic
presentations. If you've had some experience with DOM programming, you might be wondering if
XMLC is just another presentation strategy that exposes a lot of DOM programming. The answer

 4

is no. XMLC has been designed to alleviate the more tedious aspects of DOM development
without shutting out the ability for experienced DOM developers to access low-level DOM
methods when desired.

XMLC has inspired the Enhydra open source project Barracuda with the goal of delivering a
higher-level presentation framework. Barracuda models itself after the Java Foundation Class
Swing library, specifying an event model and UI components.

Chapter 3 will compare XMLC with other popular presentation technologies in some detail. Much
of the remainder of this chapter will focus on the "why" behind that difference.

Modern Three-Tier Application Design

I've made a fairly aggressive attempt to explain the role of Enhydra XMLC in Web presentation
development. I assume that you have performed some flavor of CGI-style development, or even
JavaServer Pages programming. Let's raise the discussion a bit higher in order to describe
XMLC's value to the role of presentation logic.

Presentation logic is one aspect of Web application architecture design and development. The
terminology and lines of division might be a bit inconsistent at times, but there are generally
accepted models of application architectures that take advantage of "layer cake" strategies. Typical
three-tier application architectures isolate functionality based on role. Illustrated in Figure 1.4,
areas of common functionality are represented as collections of common services and
programming logic. The three typical divisions are presentation logic, business rules or logic, and
data logic.

Figure 1.4. High-level view of a three-tier Web application architecture.

Dividing an application into multiple functionally-discrete tiers helps to reduce the impact of
change to an application over its lifetime. A data layer will insulate the rest of the application
when one brand of database is swapped out for another. When a pricing algorithm needs an update
to reflect a new marketing promotion, only the business logic requires modification.

 5

Functionally-discrete tiers make it easier to divide up responsibilities according to programming
talents and core competencies in medium-to-large scale development projects. And, as new client
technologies are supported, changes to the presentation logic pose no threat to the stability of
previously tested business and data logic.

Sun takes another view of application architecture in the J2EE world. XMLC and JSP are
components of "Web-centric applications," represented by collections of servlets, HTML pages,
templates, classes, and related resources, such as images. In the J2EE view, these applications
become EJB-centric when they start leveraging EJB in a Model-View-Controller (MVC)
architecture, where enterprise beans maintain data. Sun maintains that this architecture also
supports a clean separation of presentation, business, and data logic, enabling developers to focus
on what they do best. We will address how Enhydra XMLC can fit into the MVC picture later in
the book.

Although we will exercise every tier of a modern Web application design as we proceed through
this book, our focus is primarily through the eyes of Enhydra XMLC, and how it addresses the
needs of presentation layer development in a world deluged by new client product introductions
on a weekly basis.

A Fortuitous Decision: Going with XML (Eventually)

As an open source technology, Enhydra XMLC has been steered by the subtle yet powerful forces
of the open source process. Key contributions and support from the worldwide Enhydra open
source community have transformed XMLC into its current role as an elegant, practical template-
based mechanism for enabling single applications to negotiate with clients through multiple XML
client languages and protocols.

The decision to view markup documents through the eyes of the W3C's Document Object Model
proved to be fortuitous for XMLC. When XMLC was first defined by Mark Diekhans of Lutris
Technologies in the fall of 1998, XML was anything but the "sure thing" that it is today. In fact,
the first version of XMLC was based on an HTML DOM package. But the DOM interface was
extended by the W3C to support XML, and it wasn't long until XMLC was enhanced to support
standard XML.

As sharp as Mark is, he'd be the first to tell you that he never could have foreseen that XML might
become the basis for the markup languages of the world's mobile devices. HTML, XHTML,
WML, compact HTML, and XML are the international languages of today's mobile phones. Smart
devices, with their own enhanced computing capability, such as J2ME devices or PDAs with
embedded Flash support, rely on XML to stream data and convey results back to remote
application servers.

Mark might also tell you that the irony is that XMLC was not originally developed for device-
independent development. In fact, the top requirements could be characterized as reflecting the
needs of conservative project management and software engineering practices. Some of the top
requirements that drove XMLC's original design center were the following:

• Support truly maintainable Web application HTML presentations.
• Support the true separation of markup language and Java logic. Implement this strategy so

as to simultaneously enable role-based separation of HTML designers and Java
developers for large scale Web building/consulting engagements.

• Use nothing but standards.
• Avoid the use of custom tags. Give designers the capability to use their favorite best-of-

breed HTML design tool or editor.

 6

The move to using markup as modifiable templates gave designers the ability to leave mocked-up
content, such as rows in a table, in the HTML, later to be removed at XMLC compile-time. By
leveraging the id attribute instead of HTML/XML elements (often referred to as tags), XMLC
enabled designers to pick their own design tools without fear of unrecognized tags wreaking havoc.

Placing Value on XMLC From Your Unique Perspective

Depending on who you are and what your role is in building Web applications, there are
interesting advantages to using XMLC. From designers and information architects to developers,
project managers, and, oh yes, customers, there are a lot of perceived upsides to using Enhydra
XMLC, as outlined in Table 1.1.

Table 1.1. Perspectives
Role Perceived Value
Designer Because no embedded logic is used, you need only create one HTML file,

rather than two.

You might leave mocked up "dummy" data, such as dummy table rows, in
the page for customers to review.

There are no custom tags to confuse your favorite HTML design tools.

You can change the ordering of columns in a table by simply switching
id attributes.

You can do your job without depending on the Java developer down the
hall. That's particularly convenient if you're working as a contractor to a
consulting agency on the other end of town (or the other side of the world,
for that matter).

Developer You can design your Java application in full control of flow. There is no
"introduction" of Java between lines of HTML.

Your logic can be mostly written independent of device specifics. It's only
when you "bind" your data to a page template that you must consider real
estate issues, such as number of lines in a cell phone display device.

You don't have to hover around the designers to answer questions about
changing the logic to change the ordering of columns in a table.

Fewer mistakes are made in the handshake between markup page and
Java logic because the code and XMLC-generated template is validated at
compile-time, not runtime.

Project manager It's much easier to work with third party designers.

It's easier to divvy up tasks between designers and developers.

You are able to accommodate inevitable last minute changes in your
project plan because you don't need to go find a developer (who has since
left for another project).

Application Service
Provider (ASP)
customer

You can change the look of a generic credit check application to
match the logo and colors of a local credit union bank without
modifications to the application logic.

Independent You can update your Web-based product to support new devices with

http://xmlc.enhydra.org/
http://enhydra.org/

 7

Software Vendor
(ISV) customer

only modest changes to presentation layer, and no re-coding of business
layer.

You can leverage XMLC as a portable technology, no matter what Java
application server is used.

You can localize your presentation in German by simply creating a
German language based-page template.

Some of the descriptions of perceived value might be a little unclear at this point, but we'll address
them as the book moves on. It should, however, be obvious by now that XMLC was defined as a
response to hands-on, real-world needs. How XMLC came to extend its reach to any device that
can be driven by an XML language is a great open source story told later in this chapter.

Enhydra Java/XML Application Server

In preparation for explaining XMLC and driving home some points with sample code, let's elevate
the discussion a bit and visit the Enhydra family of technologies, of which Enhydra XMLC is a
member.

The Enhydra Java/XML application server is a partial J2EE platform. For the purpose of this book,
we will need only to address the Web container portion of Enhydra, as defined in J2EE lexicon.
Our experience at Lutris has generally been that the Web container as implemented by Enhydra is
sufficient for the majority of IT projects where the training and performance overhead of EJB
programming is not required.

Introduced as an open source technology in January 1999, Enhydra has become one of the more
popular Java/XML application servers worldwide. The Web container portion of Enhydra can be
leveraged as a lightweight but powerful server fully capable of supporting modern three-tier
architectures. Many choose to forgo the EJB server to avoid the training and development
overhead that EJB strategies bring to projects. Because of its integration with a full J2EE platform,
Enhydra Web applications are easy to migrate to an EJB-centric application.

We'll be using Enhydra as the development environment for the purpose of developing the
ShowFloor Web application. The ShowFloor application will take us through a series of coding
exercises, explaining XMLC development along the way. After explaining the requirements for
the ShowFloor application in Chapter 4, "The ShowFloor ASP Application," we'll learn about the
Enhydra Web container and its supporting development tools in Chapter 5, "Enhydra, Java/XML
Application Server."

The Enhydra Story

There is little doubt that XMLC is the most popular component of the Enhydra open source
Java/XML application server. It addresses real-world technical and project challenges that make it
a worthy alternative to JavaServer Pages. XMLC is supported and evolved under its own open
source project hosted at xmlc.enhydra.org. One of the reasons for creating this site was to make
Enhydra XMLC available as a highly portable technology for addressing the presentation layer
needs of any Java application server.

The XMLC story shares common roots with the parent open source project, Enhydra. The XMLC
project is a major sub-project under Enhydra.org. It is impossible to explain XMLC without

 8

talking about the same factors that drove the design and development of the rest of the Enhydra
environment.

Some Essential Enhydra Points

• Enhydra is the name of the open source Java/XML application server.
• Enhydra.org is the name of the open source project that supports Enhydra and

XMLC.
• Enhydra XMLC is a tool for creating dynamic Web presentations, as well as

delivering content in any XML language from any application tier.
• Tomcat is the Apache implementation of the Sun servlet Web container that is

also incorporated in Enhydra.
• The Enhydra Application Framework (EAF) is an alternative to the Web

container for building complete three-tier applications.
• Enhydra XMLC works with either the EAF or standard servlet API.

A Genesis in Consulting, Not System Vendor Engineering

Enhydra's genesis is unique compared to most popular open or closed source application servers.
First of all, Enhydra was defined and implemented in the process of rubbing elbows with
enterprise IT and dot-com start-up customers. In the early days (1996-97) of intranet and dot-com
development, the definition of a standard Web application had yet to be settled. The hot
technologies were Java applets and ActiveX controls. They were technologies in search of a real-
world application.

But most IT managers were not intrigued. They were still focused on the resource-depleting issue
of re-booting Windows boxes on a daily basis. HTML was still a powerful yet simple concept.
Pure HTML applications avoided the firewall topic of downloading Java applets and ActiveX
controls. The possibility of HTML browsers reducing the standard worry of Windows
compatibility was intriguing, to say the least. But, IT managers being IT managers, they wanted to
take one conservative step at a time.

It was clear that the availability of shrink-wrapped Web applications was years in the future. Why?
Because early adopters of these applications weren't sure what to ask for. And no standards existed,
other than the new servlet API, defined for the purpose of extending the functionality of Web
servers with Java logic. The definition of the servlet API gave rise to the emergence of "servlet
runners," which set the stage for an entirely new industry.

The folks behind Enhydra had the advantage of leveraging their hands-on consulting experience to
define Enhydra from what appeared to be the most common requirements that different consulting
customers were asking for. It is no accident that Enhydra's features, functions, and architecture
address the needs of a consulting business and its customers, from start-up dot-coms to enterprise
IT. For example, rather than incorporate its own sophisticated Interactive Development
Environment (IDE), Enhydra defines the Kelp tools (kelp.enhydra.org) for integrating Enhydra
into best-of-breed IDE environments, such as Borland JBuilder and Sun Forte. Consultants are
picky, preferring to use their own tools, and Lutris consultants were no different.

The only graphical, IDE-like component is Enhydra Data Object Design Studio (DODS). It was
developed to relieve developers from repeatedly hand-coding the same painstaking data logic for
accessing and manipulating SQL tables as viewed through the emerging standard, JDBC. DODS
uses a graphical drag-and-drop environment to display table and attribute relationships, resulting
in auto-generated data layer logic.

Caution

http://enhydra.org/
http://kelp.enhydra.org/

 9

ASP can stand for Active Server Pages or Application Service Provider. From here on out,
we'll use ASP to refer to Application Service Provider.

Who specifically influenced Enhydra's evolution in the early days? Originally, it was Kinko's
Corporation, Federal Express, and a great many dot-com start-up companies like WizShop, the
application service provider behind the Earthlink and Intranets.com shopping malls. Later, after
Enhydra had become an open source project, support came from a great many consulting
companies worldwide, such as Digitalsesame of Taiwan and Tivano of Germany, both of whom
pioneered key Enhydra features through enthusiastic source code contributions and daily
involvement.

What's an Enhydra?

"Enhydra Lutris" is the scientific name of the California sea otter. The name and mascot
were selected by virtue of this kelp-dwelling sea creature's proximity to Santa Cruz,
California, home of Lutris Technologies, creator of Enhydra.

That was the beginning of the first phase of what Enhydra is today. The second phase was the
introduction of Enhydra XMLC, in response to the need for making Enhydra applications more
maintainable for the long haul. The third phase was when the open source effect first took place,
delivering Enhydra as a wireless platform.

The Practical Enhydra Application Framework Model

The architectural backdrop for these features again reflected requirements that were heavily
influenced by project management and business requirements to get the job done with a minimum
of training or deployment complexities. The Enhydra Application Framework (EAF), formerly
referred to as a "superservlet" architecture, was designed to support a balance of leanness,
flexibility, and adaptability with large scale project capability and deployment potential. Its
characteristics include the following:

• A simpler programming model for developers
• A smaller footprint for performance and memory issues
• An easy-to-learn programming model

The Enhydra Web Container is a complete development and runtime environment. We'll explore
this in greater detail in Chapter 5, "Enhydra, Java/XML Application Server"; but for now, here is a
partial list of Enhydra's attributes:

• Enhydra Application Framework (EAF) with session, presentation, and database manager
services.

• Enhydra XMLC, of course!
• Enhydra Director for cluster support and server-level failover.
• Web administration console with a graphical servlet debugger.
• Enhydra Multiserver servlet runner for both Tomcat (servlet 2.2/JSP 1.1) and Enhydra

EAF applications.
• Enhydra DODS for generating data objects.
• AppWizard for initializing and deploying WAR and EAF applications. AppWizard

initializes the application source tree in a presentation-business-data organization.

Enhydra.org, the Open Source Project

http://intranets.com/
http://enhydra.org/

 10

If you come from the Linux or Unix world, you're probably highly familiar with the topic of open
source and the open source mechanism. Seed a community of highly motivated developers with
source code of significant value and a software license that basically lets them run wild, and the
result can be magic. That's open source. There's no doubt about it. Open source has a way of
generating superior code, thanks to an environment that makes constant worldwide code reviews
possible.

The open source process also has a way of reflecting cutting edge trends. At first, this might
appear threatening to the more conservative IT manager. But the meaningful trends survive the
filter of worldwide scrutiny. This makes the open source process the "canary in the mine," alerting
us to worldwide application development trends that should be monitored with great interest.

The Fortune 1000 has gotten heavily involved in the open source phenomenon as well. At first
glance, you might see a lot of e-mail postings to open source list servers from someone like
dhy01@hotmail.com. But the fact is that dhy01 is likely to be an employee of Merck
Pharmaceuticals or General Electric. We're not saying that these folks are better programmers.
Instead, we're suggesting that these folks help drive practical, real-world requirements for the
direction of open source software features and capabilities. These mailing lists are composed of a
worldwide audience as well. The presence and involvement of an international community gives
open source the ability to rapidly incorporate support for new, legitimate technology trends. As
we'll see at the end of this chapter, the impact of wireless trends outside the United States is an
excellent example of the value of an open source organization composed of a worldwide
community.

Because all these communications are on public view via the Internet, there are never any feature
surprises with new versions of open source software. Compare that experience to what you might
have experienced with new versions of Microsoft Word, a sore point with this author.

Lutris released the Enhydra Java/XML application server as Enhydra 2.0 to the open source world
on January 15, 1999. The announcement was made with a few e-mails to well-known Java
discussion groups that encouraged the curious to join the Enhydra mailing list.

As a member of the overall open source community, there should be little surprise that Enhydra
has evolved with the contributions of other excellent open source projects to construct a complete
application server development and runtime environment. One look at the list of contributing open
source projects shown in Figure 1.5 establishes Enhydra's heavy open source composition.

Figure 1.5. Open source lineage of the Enhydra universe.

The Magic Ingredients of Open Source Mechanism

If you think of open source mechanism as generating magic, then the ingredients are
simple:

mailto:dhy01@hotmail.com

 11

• Easy access to source code
• Developers tied together by e-mail/newsgroups
• Great technology that shows real value

Other Enhydra.org projects

Enhydra.org is the central site and organization behind Enhydra and its family of related
technologies. Table 1.2 lists some of Enhydra's projects.

Table 1.2. Selected Enhydra.org Projects
Project Description
zeus.enhydra.org Zeus addresses the topic of data binding, where XML documents

are turned into Java code and back again. The chair of the Zeus
project is Brett McLaughlin, author of Java and XML (O'Reilly).

xmlc.enhydra.org The XMLC project is dedicated to spreading the goodness of
XMLC well beyond the boundaries of the Enhydra project. Mark
Diekhans, of Lutris Technologies and inventor of XMLC, chairs
this project.

barracuda.enhydra.org Barracuda is trying to raise the level of abstraction above the
XMLC layer. The chair of the Barracuda project is Christian
Cryder.

instantdb.Enhydra.org InstantDB is a 100% Java relational database. Peter Hearty, the
creator of InstantDB, oversees this project. InstantDB is used in
our ShowFloor App demo application.

kxml.enhydra.org Initiated by Stefan Haustein, the kXML project focuses on small
footprint XML parser technology for small devices, such as
handheld J2ME phones.

dods.enhydra.org The project that supports the DODS tool for mapping data logic to
relational database tables.

kelp.enhydra.org Kelp focuses on tools for integrating Enhydra into popular
development design environments, such as Forte and JBuilder.

The Enhydra Public License

Every open source technology comes with a source code license. From FreeBSD to
GNU Public License, there are plenty to go around. The Enhydra Public License (EPL)
is based on the Netscape Mozilla license.

The EPL states the following:

• There is no restriction on re-shipping the source code with your product, other
than to do so under the EPL.

• You're given a license to use any patent concepts within Enhydra as long as you
use those concepts by incorporating the Enhydra application server. In other
words, you couldn't use a patented concept for an implementation not involving
the Enhydra application server.

• You're required to return any code changes made to the core Enhydra
technology, including tools such as Enhydra XMLC and Enhydra DODS, as
well as the runtime Enhydra application server.

• All the code you develop outside the Enhydra technology, that is, your
application and its intellectual property, is yours. It's only when you get inside

http://enhydra.org/
http://enhydra.org/
http://enhydra.org/
http://zeus.enhydra.org/
http://xmlc.enhydra.org/
http://barracuda.enhydra.org/
http://instantdb.enhydra.org/
http://kxml.enhydra.org/
http://dods.enhydra.org/
http://kelp.enhydra.org/

 12

Enhydra source code that you must return code changes to Enhydra.org as
candidates for possible inclusion.

Open Source Delivers Wireless

There's no way I can end this chapter without explaining how XMLC technology eventually
embraced wireless devices. How did it inherit this capability, even though Lutris developers, at the
time, had no wireless experience whatsoever? This is the first major example of how the open
source side of Enhydra's world determined a new destiny for this evolving bit of Internet
infrastructure technology.

A funny thing happened to Enhydra along the open source route. It's generally well known that
wireless communication has grown faster outside the United States. Given Enhydra's worldwide
accessibility, it was only natural that the forces of wireless, represented by consultants in Germany,
Taiwan, and Sweden, would apply their customers' needs to Enhydra. As participants in the
wireless wave that had yet to hit the shores of North America, it was the international
representatives of the Enhydra.org community that saw the potential for wireless device support in
XMLC.

The moral of the XMLC story? Who needs product managers when a worldwide open source
community is there to identify a need, define the solution, and deliver it?

Summary

This chapter has given you the first taste of Enhydra XMLC development. I've explained how
XMLC turns a markup page of HTML into an object representation in the form of a DOM
template. XMLC simultaneously uses designer- or developer-inserted id attributes to identify
those portions of the DOM that will most likely be manipulated for dynamic content. The result is
a set of convenient accessor methods that bypass the need for low-level DOM API development.
We asserted that the use of the DOM tree as a "middleman" for representing the markup document
removes the inter-mixing of markup and Java logic. The result is a clean, consistent division of
markup and programming logic. The implications are many, as we've identified from the different
hypothetical perspectives of members of typical Web application development projects.

We also covered the following:

• Modern three-tier Web application architectures.
• Value perspectives on Enhydra XMLC.
• A brief introduction to the Enhydra Java/XML application server.
• A brief introduction to the open source process.
• How Enhydra XMLC gained its wireless capabilities through the open source process.
• An introduction to Enhydra.org, the open source project that is the umbrella effort for

other related projects, including Zeus for data binding, Kelp for integrating Enhydra in
third-party Interactive Design Environments and DODS for the data object to relational
database mapping tool.

http://enhydra.org/
http://enhydra.org/
http://enhydra.org/

 13

Chapter 2. XMLC Development
IN THIS CHAPTER

• Taking Control from HTML
• Development Flow with XMLC
• The Document Object Model
• Resuming xmlc and the Development Phase
• Loosely Coupled Development
• XMLC for Servlet Programming
• Internationalization
• Device Independence in an XML World
• XMLC Benefits
• Summary

Let's transition the discussion of why XMLC was created and for what purpose to how XMLC
works, and how it can influence the working relationship of HTML designers and Java developers
in a Web application development project. In this chapter, we'll explore enough of the
underpinnings of XMLC to set the stage for explaining the impact of XMLC on the design of a
Web application and the development process of Web presentations.

We will also walk through the example of the development of a login screen for our upcoming
discussion of the ShowFloor demonstration application. During this exercise, we will begin the
first of many discussions of key XMLC topics. One of these topics will address the conceptual
necessity of understanding the role of the DOM in XMLC programming.

This discussion will also provide the backdrop for some comparisons with other presentation
technologies in Chapter 3, "Presentation Technologies."

Taking Control from HTML

Beginning with CGI programming, dynamic Web presentations were created by Perl scripts that
were welded to the HTML markup language. Print statements with hard-coded HTML elements
enabled rapid development at the price of creating presentations that were next to impossible to
rework. This style of development led to a large market of valuable hybrid HMTL/Perl
designers/developers. Often, the developer's value lay in the prospect of the chaos that would
result if they were to leave the company.

The requirement for first generation enterprise-quality Web applications, typically built by
consultants, drove the emergence of server-side Java. The proliferation of server-side Java resulted,
in part, from the consultants who used it for the "platform independent" story they needed to use
in an attempt to address the largest range of possible customers. From IBM AS/400s to HP e3000s,
as long as there was a ported Java Virtual Machine, a Java application could be proposed.

The steady trend of server-side Java Web applications built by a rapidly growing community of
new age Internet consultants yielded significantly more scalable and maintainable Web
applications. But the baggage of old style CGI/Perl presentation strategies, featuring hybrid coding
of HTML and programming logic, was carried over into the Java realm. Servlet programming and
the introduction of JavaServer Pages and Active Server Pages represented the first claims to taking
more maintainable template approaches to presentation development. The music was different, but

 14

it was the same dancing around HTML that led even an object-oriented language like Java to be
used in ways that broke its own rules.

The irony is that HTML, as founding king of the Internet presentation languages, drove legions of
application architecture designs that undermine true object-oriented design at the interface of
markup language and programming logic. This book is about XMLC and how it turned the tables
on HTML.

This chapter brings out the true object-oriented nature of XMLC development. XMLC supports
loose coupling between presentation objects and XML/HTML documents. As a direct result, it
also supports loose coupling between those who build these application components, namely
designer and developer. In Chapter 1, we established the creation of XMLC as a response to
project management needs in large consulting engagements. In keeping with the project emphasis,
we'll approach the topic of XMLC development from a process view in order to bring out some of
the how's and why's of XMLC development. While we're doing this, we'll also take a first pass at
understanding the concepts behind the document object model (DOM) and DOM development,
and how it interweaves with XMLC development.

Development Flow with XMLC

Enhydra XMLC was introduced into the open source mechanism in the spring of 1999. It was the
first presentation technology to put Java in command of HTML. XMLC gave Java application
logic the capability to view HTML as one of any number of presentation resources, including
WML, VoiceXML, and XML, that can be read, updated, and transmitted. We've already discussed
how XMLC was an engineering response to project management needs. In particular, XMLC
development represents

• A strategy to support parallel development by presentation designers and Java developers.
• A strategy for large scale development projects, particularly where third party designer

and developer companies were involved.

As we hinted in Chapter 1, only later was the role of XMLC expanded to support

• A strategy for device independence.
• A strategy for delivering XML data to other devices.

A Sample Project Scenario

The demonstration application we will introduce in Chapter 4 is called the ShowFloor application.
It will serve as our platform for introducing the XMLC development language and environment.
We'll focus on HTML to begin with, but later we will expand the demo to support Flash, WML,
and VoiceXML presentation languages and technologies as well.

The ShowFloor application will be the platform for a fictitious application service provider, or
ASP. It will support the capability to take on the look and feel of the company that has rented it to
host a large event. This is often referred to as re-branding. The event attendee thinks they're
dealing with a Web site custom built for the event host, when in reality, it's a kind of rent-a-Web
application that is possibly hosted by the same company that rents it to others. Again, we'll get
into specifics in Chapter 4, "The ShowFloor ASP Application."

Among its many features, this demo application will support an administrative interface for event
hosts and vendors to add or update information for a particular conference. But for our immediate

 15

needs, let's speculate on the development process of the HTML-based login screen. This Web
page will be used by the event administrator to log into the system.

NOTE

Storyboarding is the practice of creating mock-up presentation screens that can be used to
convey the look and feel and general features of each screen, as well as the navigational flow
from one screen to the next. Often this storyboard takes the form of one large Photoshop
image that can be transferred onto a large board, or a series of on-line images linked together
by some level of mocked-up active button behavior.

Storyboarding is an ideal way to begin scrubbing the customer's requirements and get an
immediate response from the customer (as in, "Is this what you're asking for, and are you sure
it's what you want?") The goal of XMLC is to minimize the number of steps required for a
project to transition from storyboard to functional presentation. Lutris consultants coined the
term "visual contract" to acknowledge how important storyboarding is to defining Web
applications.

Let's assume that the requirements, architecture and storyboarding phases have been concluded,
and it's time to start development. Our login screen looks something like Figure 2.1.

Figure 2.1. Mocked-up SFAdmin Login screenshot.

Designer and Developer Assign ids

With an approved sketch or mockup of the login screen in hand, the designer and Java developer
(that is, software engineer) discuss the dynamic nature of the presentation. They identify three
areas that will be the target of dynamic content:

1. the event logo,
2. the error message STOP graphic, and
3. the error message string.

 16

The event logo must reflect the name of the company hosting the event. It might be a large
original equipment manufacturer (OEM) like Intel or Sun, or a large vertical industry player like
Boeing or J.P. Morgan. The event could be a Solaris development conference, or a financial
industry vendor show. Depending on the URL used to access the login page, such as
http://www.showfloorApp.com?eventHost=Intel, the logo associated with the event host must be
displayed.

The error message string will be updated dynamically if the administrator makes an error during
login. Simultaneously, the STOP sign graphic must also appear. Both the string and the graphic
are in table cells inside a table row. The table acts as a "geometry manager" to control the layout
of your screen. In the event that you need to remove the error message and STOP sign graphic,
you can simply remove the entire row.

Within the scope of addressing the login presentation, the designer and developer have one task to
perform. They must choose and agree on an id to uniquely identify each target for dynamic
content. id attributes are a special type of attribute that uniquely distinguishes a specific instance
of an XML or HTML element from other like-named elements. In other words, no two elements
of the same name, such as td, may have the same id attribute value in an HTML/XML document.

Figure 2.2 illustrates how the XMLC compiler will map the id's value into the generated
associated accessor method. In this case, the id value EventLoginLogo will influence the name
of the method that the developer will eventually use to modify the contents of the src attribute
associated with the image element.

Figure 2.2. How id attributes map to Java/DOM methods.

These ids are what the XMLC compiler will use to simplify the following tasks:

1. Dynamically loading the appropriate logo image
2. Removing the STOP graphic
3. Removing or updating the error string

NOTE

Using cascading style sheets (CSS) for HTML design has become a standard approach to
simplifying the tasks of both the designer and the developer. The CSS gives the designer full
control over look and feel. Simultaneously, the use of CSS frees up the developer to focus on
solid coding, as opposed to remembering to insert directives here and there during
the development process. We'll assume the use of CSS in page examples through this book.

Tasks 2 and 3 appear a bit odd. What's the idea of "removing" content? The answer is that there
are many strategies for designing screens for processing by XMLC. This is the one we have
chosen. Rather than define a collection of login screens reflecting different scenarios, such as

http://www.showfloorapp.com/?eventhost=intel

 17

failed login or successful login, we've created one mocked-up screen that contains all the possible
elements. Later we'll see how we handle this programmatically.

The following sample of three HTML fragments speculate on how the placement of the ids for all
three dynamic components might appear:

<tr id="ErrowMsgRow">
<td id="LoginErrorMsg">** Error message goes here..</td>

With the assumption that this process for assigning ids was repeated for all the other screens of
our ShowFloor application, the designer and developer can now part ways and perform concurrent,
independent development, without having to talk again, in theory. All that was required was to
identify and name the ids that will be used to name all targeted areas for dynamically-generated
content. The assignments are illustrated in Figure 2.3.

Figure 2.3. Assigning selected id attributes.

This scenario of the working relationship between designer and developer is a distinguishing
attribute of XMLC. This is what XMLC means by a clean separation between the two roles of a
Web application building project. There are many more interesting benefits and implications of
this process that will be itemized later in this chapter.

NOTE

Read our lips: "No new tags."

Did you notice that not one new HTML tag was introduced in this process? That is one of the
key features of XMLC development. No new tags, or, more importantly, no illegal tags are
required by XMLC programming. One of the benefits of this feature is that XMLC can be
used with any HTML design tool on the market.

The Developer's Path with XMLC

 18

The developer walks away from her meeting with the designer knowing the general complexion of
the login page and the ids that identify the areas of dynamic content. But what does this do for the
developer in terms of getting her job done on the Java side of the application equation?
Specifically, how is the designer going to use those ids to leverage Java logic to generate the
required content? How will this accelerate the development process, and do so in a manner that
makes the application easy to maintain for a long time?

Working with HTML and ids

The raw HTML page in Listing 2.1 is an example of the mocked-up login screen. By "mocked-
up," we mean that it might contain content that will be replaced with real content when the
application is deployed. In conventional JSP development, this would be impossible to do without
creating separate files, one for the mockup and the other for the HTML/JSP scriptlets.

Listing 2.1 SFAdminLogin.html

<html>
<head>
<title>ShowFloor Administration Login</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-
1">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<form name="SFAdminForm" method="post"
action="SFAdminLoginProcess.po" >
 <table width="80" border="0" cellspacing="0" cellpadding="5">
 <tr>
 <td colspan="2" NOWRAP>

 <hr>*** Administrator Login ***<hr>
 </td>
 </tr>
 <tr>
 <td width="22%">
 <div align="RIGHT">User:</div>
 </td>
 <td width="78%">
 <input type="text" name="usernameTF">
 </td>
 </tr>
 <tr>
 <td width="22%">
 <div align="RIGHT">Password:</div>
 </td>
 <td width="78%">
 <input type="PASSWORD" name="passwordTF">
 </td>
 </tr>
 <tr id="ErrorMsgRow">
 <td height="49">
 <div align="CENTER"><img src="media/stopSign.gif" width="60"
height="62"></div>
 </td>
 <td id="LoginErrorMsg">** Error message goes here..</td>
 </tr>
 <tr>
 <td colspan="2">
 <div align="RIGHT">

 19

 <input type="image" border=0 src=media/loginButton.gif"
width="75" height="31">
 </div>
 </td>
 </tr>
 </table>
</form>
</body>
</html>

Whether we are looking at a target HTML page that was constructed by the designer or the
developer doesn't really matter. XMLC supports a placement-independent view of dynamic
content. Therefore, all that matters right now is that the developer has a page in which to insert the
ids that she and the designer agreed to use. In the HTML page, you can see the IMG element and
the id value EventLoginLogo. The src attribute points to a placeholder GIF image that the
Java presentation logic will deal with later.

NOTE

From here on out, we will be discussing the use of the xmlc command from the command
line. For the Windows NT/2000 audience, please note that a bash shell is provided with
Enhydra for you to follow along.

Enhydra also comes with the Kelp library, which gives it the capability to integrate into
popular graphical Interactive Development Environments (IDEs) such as Oracle's JDeveloper,
Sun's Forte and Borland's JBuilder. In the IDE environment, many of the command line
options we'll discuss can be found as radio buttons or check boxes in the graphical world.

The recent addition of Apache's Ant technology has also simplified and made more portable
the Enhydra build environment. We'll address this popular new Java technology in Chapter 10,
"Servlet Web Applications."

The xmlc Command

With ids inserted into the mocked-up page, it's now time to use the xmlc command to turn the
page into an object representation in the form of a Java class that can be manipulated by Java logic.
There are a great many runtime options provided by the xmlc command. In this discussion, we'll
use only the options that reveal what happens "under the hood" as XMLC transforms the page into
a Java object.

The xmlc command that we use for the development of our login presentation might be executed
as follows:

xmlc -class FSAdminLoginHTML options.xmlc FSAdminLogin.html

Terminated with a required .xmlc extension, options.xmlc is the name of a file that might
contain one or more xmlc command line options. This feature helps conserve the length of the
command line. We'll explore the many xmlc options in Chapter 7, "The xmlc Command."

The -class option instructs xmlc to create a Java class named FSAdminLoginHTML.class.
This class will contain the fields and methods to generate a DOM representation of the login page
and convenient accessor methods auto-generated by XMLC using the id attributes the designer
and developer chose. These methods provide the shortcuts that make it very easy to directly access
the specific DOM element from the developer's Java logic. Without these methods, the developer

 20

would have to perform a great deal of work to traverse the tree and make the changes necessary to
create dynamic content.

We have just entered a very large topic area known as the DOM. Let's talk about the role of the
DOM, what it is, how it works, and how it makes it possible for XMLC to address its real-world
requirements. We'll then resume our development phase discussion of the xmlc command.

The Document Object Model

The DOM is an object model for representing markup documents of XML or HTML. The model
uses the concept of nodes, which can represent every aspect of markup components, such as
elements and attributes, enabling the document to be completely recreated, after possible additions
of dynamic content, from the model.

The DOM is defined by the W3C as a set of interfaces and objects that are implemented by
different language bindings, such as C or Java. How it is represented by the Java language
bindings is the responsibility of the implementation. Enhydra uses the Apache Xerces XML parser,
as contributed by IBM Corporation, and the HTML Tidy parser from the W3C, for HTML
documents. The xmlc command examines the first line content type at the top of the targeted
document in order to select which parser to use.

The DOM is the key to XMLC's capability to let a Web application view the presentation as a
resource. By turning the presentation into a resource, often called a template, different templates
can be selected, loaded, and manipulated by the application. These resources may represent
documents of HTML, or any legal XML language such as WML, VoiceXML, or custom XML for
communicating with a Flash 5 or J2ME client.

The DOM describes a standard API for building, traversing, and manipulating the hierarchical
representation of an XML document. Node types are defined that provide object representations of
markup components. Figure 2.4 illustrates most of the DOM node types.

Figure 2.4. DOM node types.

 21

The DOM was originally specified by the W3C to specifically address HTML. It was later
amended to incorporate support for XML. This was part of the natural course of things, because
the W3C also defined the XML specification. The specs can be found at www.w3.org/TR/DOM-
Level-2-Core/. If you look under the hood of Enhydra, you'll find that it supports the specification
for DOM Core Levels I and II.

But, other than demonstrating Enhydra's use of a standard specification, the fact is that the XMLC
developer doesn't need to have full knowledge of the DOM classes, methods and all. For 95% of
XMLC programming, the only nodes of interest are the following three:

• Document Node
• Element Node
• Attr Node

Integrated DOM support means an XMLC strategy can be used with any XML-compliant
language. VoiceXML, WML, compact HTML(cHTML), and XHTML are just a few examples.

DOM Nodes Represent HTML/XML Objects

http://www.w3.org/tr/dom-level-2-core/
http://www.w3.org/tr/dom-level-2-core/

 22

Defined by the DOM Node interface, each node has a type, a name, a value, and an associated set
of methods. A node can represent any HTML/XML object, such as an ELEMENT_NODE,
TEXT_NODE, or a _NODE. Table 2.1 lists the recognized node types and their predefined short
values that are used by getNodeType(). We will talk about most of these node types in Chapter
6, "XMLC Basics."

Table 2.1. Node Types
DOM static variables Short Integer
ELEMENT_NODE 1
ATTRIBUTE_NODE 2
TEXT_NODE 3
CDATA_SECTION_NODE 4
ENTITY_REFERENCES_NODE 5
ENTITY_NODE 6
PROCESSING_INSTRUCTION_NODE 7
COMMENT_NODE 8
DOCUMENT_NODE 9
DOCUMENT_TYPE_NODE 10
DOCUMENT_FRAGMENT_NODE 11
NOTATION_NODE 12

WML, the wireless markup language, is an XML language and therefore conforms to the standard
definition of an XML document. Figure 2.5 illustrates how the markup in a WML page is
identified as XML objects that will be parsed and eventually represented in a DOM tree. (Note
that this example doesn't work for an HTML document because entity declarations are not
permitted in HTML.) Figure 2.6 shows a portion of DOM tree created by a DOM parser such as
Apache Xerces. This tree demonstrates how the parser uses nodes to organize XML objects into a
hierarchy of relationships.

Figure 2.5. Labeling objects in a WML document.

Figure 2.6. WML objects as nodes represented in a DOM tree.

 23

DOM Navigation and Manipulation

The Node interface defines the methods necessary to navigate, inspect, and modify any node. The
methods listed in Table 2.2 are a representative subset of methods identified by the
org3.dom.node interface. The ones that have been chosen for this list are the ones most
commonly used in XMLC programming. For example, you might use appendChild() to add
another radio button to a form, or a new row to a table. getFirstChild() is used, for example,
to retrieve the first option item in a menu form. For our SFAdminLogin screen, we'll use
removeChild() to remove the STOP GIF and the error message string when the administrator
successfully logs in to the system.

Table 2.2. Commonly Used Node Methods in XMLC Development
Method Return value
appendChild(Node newChild) Node
cloneNode(Boolean deep) Node
removeChild(Node oldChild) Node
replaceChild(Node newChild, Node oldChild) Node
getFirstChild() Node

cloneNode() provides a telling insight into how XMLC programming leverages the Node
interface. cloneNode() reflects XMLC's role as a templating tool because you can take the
source tree and clone selected portions of it to act as a template for adding new XML objects. For
instance, you can take a row in a table and treat it as a sub-tree template to add new rows of
dynamic content. Using cloneNode() you simply make a copy of the existing row to stamp out
new rows, appending them to the cloned copy. Your work is done after you delete the portion of
the document you cloned, then attach the updated cloned portion back to the tree with
appendChild(). Chapter 8, "HTML Presentations," will explain template cloning in detail.

 24

Figure 2.7 illustrates how different methods apply depending on the contextual position of one
node relative to another. The black node in the middle represents the current context.

Figure 2.7. Examples of methods associated with the contextual position of the
current node.

Some methods of the Node interface are not always applicable to the node in question. For
instance, text nodes never have children. A Java exception would result if you were to attempt to
delete a child from a text node using deleteChild(). The motto for DOM programming:
"Have your JavaDoc ready."

XMLC-Supported DOM Packages

The DOM tree represents the hierarchical relationship of markup elements and their attributes and
content as described in the original document. Enhydra supports the packages that are
implementations of the DOM Node sub-interfaces specific to the particular XML language such
as HTML, VoiceXML, or other DTD-defined XML languages. A partial example of one of these
packages is listed in Table 2.3.

Table 2.3. HTML Table-specific Sub-interfaces of the Node Interface
HTML Element Description
HTMLOListElement Ordered list element. Includes setStart() for starting

sequence number.
HTMLBodyElement Body element. Includes setBgColor() for setting background

color.
HTMLInputElement Form element. Includes setChecked() when check boxes or

radio boxes are present.
HTMLTableCellElement Cell element object used to represent the TH and TD

elements.

These packages give you the capability to perform type-safe programming within the context of
each XML language. But no requirement prevents you from performing generic DOM
programming. The DOM sub-class interfaces for XHTML, WML and VoiceXML are as follows:

 25

org.enhydra.xml.xhtml.dom
org.enhydra.xml.wml.dom
org.enhydra.xml.voicexml.dom

How the DOM interface is used to extend an HTML or a VoiceXML implementation can be
examined in the class file generated by executing the xmlc command with the -keep option. In
our example, the generated XMLC document class SFAdminLoginHTML implements the
interfaces as defined by the generic XMLObject, as well as the HTML package, HTMLObject.
HTMLObjectImpl is the implementation of the HTMLObject interface.

public class SFAdminLoginHTML extends
org.enhydra.xml.xmlc.html.HTMLObjectImpl
implements org.enhydra.xml.xmlc.XMLObject,
org.enhydra.xml.xmlc.html.HTMLObject

xmlc Value to DOM Programming

With XMLC programming, the good news is that you won't have to worry a lot about creating
traversal logic for moving around the DOM tree looking for id attributes. That's because the
convenience functions automatically created by XMLC during compile-time provide direct access
to the node in question.

DOM programming is actually quite simple. The challenge is to clearly conceptualize the
boundary between the generic DOM model and the objects of the document-specific HTML/XML
page. Until you are comfortable with this model, you might want to work with XMLC
programming on small projects. Hopefully, this chapter and the more detailed discussion in
Chapter 6 will help you clear that hurdle.

Examining the DOM Tree Representation of SFAdminLogin

Let's return to the xmlc command. Using the -dump option, we can take a look at our DOM tree
in Listing 2.2 in human-readable language.

Listing 2.2 Output from xmlc -dump -dom xerces SFAdminLogin.html

SFAdminLogin.html:8: Warning: <table> lacks "summary" attribute
SFAdminLogin.html:11: Warning: lacks "alt" attribute
SFAdminLogin.html:34: Warning: lacks "alt" attribute
DOM hierarchy:
 HTMLDocumentImpl:
 HTMLHtmlElementImpl: HTML
 HTMLHeadElementImpl: HEAD
 HTMLTitleElementImpl: TITLE
 TextImpl: ShowFloor Administration Login
 HTMLMetaElementImpl: META: content="text/html; charset=iso-
8859-1" http-equiv="Content-Type"
 HTMLBodyElementImpl: BODY: bgcolor="#FFFFFF" text="#000000"
 HTMLFormElementImpl: FORM: action="SFAdminLoginProcess.po"
method="post" name="SFAdminForm"
 HTMLTableElementImpl: TABLE: border="0" width="80"
 HTMLTableRowElementImpl: TR
 HTMLTableCellElementImpl: TD: colspan="2" nowrap=""
 HTMLDivElementImpl: DIV: align="CENTER"
 HTMLImageElementImpl: IMG: id="EventLoginLogo"
src="media/dummyLogo.gif"
 HTMLBRElementImpl: BR
 TextImpl:

 26

 HTMLHRElementImpl: HR
 TextImpl: *** Administrator Login ***
 HTMLHRElementImpl: HR
 HTMLTableRowElementImpl: TR
 HTMLTableCellElementImpl: TD: width="22%"
 HTMLDivElementImpl: DIV: align="RIGHT"
 TextImpl: User:
 HTMLTableCellElementImpl: TD: width="78%"
 HTMLInputElementImpl: INPUT: name="usernameTF"
type="text"
 TextImpl:
 HTMLTableRowElementImpl: TR
 HTMLTableCellElementImpl: TD: width="22%"
 HTMLDivElementImpl: DIV: align="RIGHT"
 TextImpl: Password:
 HTMLTableCellElementImpl: TD: width="78%"
 HTMLInputElementImpl: INPUT: name="passwordTF"
type="PASSWORD"
 TextImpl:
 HTMLTableRowElementImpl: TR: id="ErrorMsgRow"
 HTMLTableCellElementImpl: TD: height="49"
 HTMLDivElementImpl: DIV: align="CENTER"
 HTMLImageElementImpl: IMG: src="media/stopSign.gif"
width="60"
 HTMLTableCellElementImpl: TD: id="LoginErrorMsg"
 TextImpl: ** Error message goes here..
 HTMLTableRowElementImpl: TR
 HTMLTableCellElementImpl: TD: colspan="2"
 HTMLDivElementImpl: DIV: align="RIGHT"
 HTMLInputElementImpl: INPUT: border="0"
src="media/loginButton.gif"
type="image" width="75"

Note that we've intercepted a few warnings from the results of the XMLC compile. This brings out
a huge advantage of XMLC, namely the capability to perform validation during compile-time that
our page is a well-formed HTML or XML document.

Note

Well-formed and valid are not synonymous terms. Well-formed applies to a properly declared
physical structure that is in sync with XML rules. A valid document is one that is in line with
an associated Data Type Declaration (DTD) file. In practice, DTDs are essential for defining
standard XML languages as well as enforcing data integrity.

The dump reveals that markup elements are recognized by the DOM package and that attributes
are associated with each element. These attributes are not technically nodes themselves.

You also see reference to "LazyText." This ironic term is a side effect of the LazyDOM, which is
a special extension of the Xerces parser. It greatly improves standard DOM performance (and
reduces a potentially large memory footprint) by instantiating only those nodes that are targeted
for manipulation by the Java application. There are cases where you may choose to use the Xerces
parser instead. An XMLC command-line option for analyzing how to evaluate which parser to use
will be called out in Chapter 6. The command

xmlc –dom xerces

can be used to override the LazyDOM default parser.

 27

The rest of the output in Listing 2.2 illustrates the DOM organization of our login page. As you
follow the familiar HTML elements—HTML, HEAD, TITLE, and so on—you'll note the HTML
element type associated with each node.

Note

The -dump XMLC option has a counterpart on the runtime side. Leveraging the Java class
DOMInfo under the hierarchy org.enhydra.xml.dom, you can dump the tree at any stage
of its modification during runtime to the console or to a file:

DOMInfo.printTree("SFAdminLogin DOM:", SFAdminLogin);

The form attribute action="SFAdminLoginProcess.po" is a reference to a Java class
referred to as an Enhydra Presentation Object (PO). This PO is responsible for processing the
login screen after it is submitted by the user. This mechanism is covered in detail in Chapter 5,
"Enhydra, Java/XML Application Server.."

Note

The .po in Enhydra presentation files stands for presentation object. Odds are that if you find
a URL terminated with .po (just before the parameter list) you are looking at a reference to
an Enhydra "super-servlet." Because Enhydra also supports standard servlet 2.2 development,
you can't always be sure if you're looking at an Enhydra application.

The event host's image is identified by the id that we inserted in the HTML. It labels the HTML
image element that currently points to a dummyLogo.gif acting as a placeholder.

Examining the Generated DOM Java Code

An xmlc compiler translates an HTML or XML file into a DOM-based Java class. To generate
the class, xmlc must construct an intermediate Java source file. By default, this file is removed
during compile-time. But xmlc can be told to leave this file intact with the –keep option. This is
an excellent option to use while learning how xmlc leverages the id attributes to create accessor
methods.

Note

There's no reason to wait until you've written your Java code to see how xmlc works. xmlc
generates the Java class that your application will eventually import and manipulate. As soon
as you've got your HTML or XML file created, insert some ids and run xmlc -keep to see
what it does with them.

Resuming xmlc and the Development Phase

We now want to take the source tree, represented as a DOM class, instantiate it as an object and
massage it with dynamic content created by Java logic. When completed, we then turn it into a
result tree that can be returned as an updated presentation screen.

The XMLC compilation provides us with direct access methods for getting to the areas of the
DOM that we are most interested in. Keying off the id attributes that we assigned early, XMLC
generates the following set of convenience methods for our working example:

 28

public org.w3c.dom.html.HTMLImageElement getElementEventLoginLogo()
public org.w3c.dom.html.HTMLTableCellElement getElementLoginErrorMsg()
public org.w3c.dom.html.HTMLImageElement
getElementLoginErrorStopSign()
public void setTextLoginErrorMsg(String text)

The developer now has these convenience functions at her disposal to get the job done with a
minimum amount of DOM-specific traversals.

Linking the DOM class with the SFAdmin Application

You'll recall that earlier we specified an output class name of SFAdminLoginHTML to inherit the
document template class generated by the xmlc command. In our presentation object, we
instantiate the class using the xmlcFactory.create() method, illustrated in the code:

SFAdminLoginHTML sfaLogin;
sfaLogin
=(SFAdminLoginHTML)comms.xmlcFactory.create(SFAdminLoginHTML.class);

We could have used Java new, but would have lost some of the special features of xmlcFactory,
discussed in Chapter 7. The generated object is stored in the variable sfaLogin. All subsequent
operations will be applied to the tree represented by the sfaLogin object.

EventLoginLogo

Let's leverage the first id, EventLoginLogo, to set the stage for replacing the dummy logo with
the event sponsor's logo at runtime. Recall that this application is being written to represent a
leaseable service from an application service provider. Therefore, the application will support
many event hosts. Our application supports a dynamic approach to displaying event-specific
content. The HTML id attribute EventLoginLogo will be used to identify the location of the
dummy image in the tree, then swap in the appropriate logo.

With our template object loaded, the following code retrieves the image that represents the event
host's logo, dimensions and all:

// A bit of pseudo-code to fetch an image from a fictitious
// eventHost object from the business layer.
eventImage image = fetchEventHostLogo(eventHost);
sfaLogin.getElementEventLoginLogo().setSrc(image.getName());
sfaLogin.getElementEventLoginLogo().setWidth(image.width);
sfaLogin.getElementEventLoginLogo().setHeight(image.height);
sfaLogin.getElementEventLoginLogo().setAlt("Sponsored by the
wonderful folks from ACME");

getElementEventLoginLogo() is the XMLC-generated method that points us to the logo
node in the DOM tree represented by the sfaLogin object. setSrc(),from the standard
HTMLImageElement sub-DOM package, updates the node reference containing the dummy logo
with the correct logo image. For completeness, we add an ALT value with another
HTMLImageElement method, setAlt(),which will be displayed if the administrator places his
or her cursor over the image.

LoginErrorMsg and ErrorMsgRow

Updating the EventLoginLogo probably seemed pretty intuitive. Locate the node (element) and
update its associated content. For the error message scenario, we're going to do something

 29

different. As we mentioned earlier, our strategy in using these ids is to make it so that the
designer and developer can decide on one login screen that would account for successful and
unsuccessful logins. There are two points to this strategy.

1. Before displaying the page to the administrator for logging in, remove the row containing
the StopSign GIF and error message string. Reference ErrorMsgRow to do this.

2. If an error is encountered, reload the original template and simply update the error
message string with a message specific to the error that occurred. Reference
LoginErrorMsg to do this.

The following code fragment uses the id attribute ErrorMsgRow to remove the entire row
containing both the error message and the stop sign image:

sfaLogin.getElementErrorMsgRow().removeChild();

If an error is detected during login, the following code fragment updates the original template with
an error message specific to the error condition:

sfaLogin.setTextLoginErrorMsg("Wrong password. Try again");

This approach to how we handled the login screen might appear to be a bit confusing at first, but
the fact is that there are many other ways this could have been approached. We chose this strategy
to bring out the flexibility around XMLC implementation options.

Mapping the DOM to a Client Response

Lest we forget, there's still the issue of how to take the updated DOM tree and stream back an
HTML document to the administrator sitting at their browser console. writeDOM()
automatically figures out the MIME type based on the document type (sfaLogin):

comms.response.writeDOM(sfaLogin);

Note

JavaDoc is a life saver in the beginner's DOM programming experience. As noted earlier,
Node interface methods don't always make sense to the node type that you want to apply an
operation on. The Enhydra application server environment includes the entire DOM
documentation via online JavaDoc and should be bookmarked for quick reference to
maximize your productivity and reduce your frustration level.

Loosely Coupled Development

In object-oriented design, defining object classes that are loosely coupled is a good thing. It means
that a class can do its job without having to know much about the implementation details of
neighboring or remote classes and the way they perform their tasks. All the class needs to know is
the signature (that is, methods and properties) of the class it requires the services of. In the
material world, this means that changes can be made to one class very easily without creating a
ripple effect of required changes elsewhere in the application environment.

XMLC supports a loosely coupled model in more ways than one. We've established that the DOM
view of the markup page and the ability to dynamically load DOM templates establishes a loose
coupling between the page and the Java logic that manipulates it. And, as we'll see in Chapter 7,

 30

XMLC's DOM class factory has the capability to compile and load new versions of reworked
markup documents, without requiring compilation of the application's presentation logic.

The use of the DOM approach with XMLC's generation of accessor methods supports the loosely
coupled relationship between the roles of designer and developer. The use of ids removes the
designer from "the need to know" about how the Java logic affects his or her design. And the
developer only needs to focus on manipulating the template through the DOM interface, not on
having to directly touch any of the markup.

The Designer's Path with XMLC

The designer's job is both the easiest and the hardest at the same time. The designer, with
storyboard in hand, needs only to apply her creative skills to produce the Web presentation screens.
That sounds great, but it's also the designer's role to take the flack from the customer. And, let's
face it, it's always the "look" of the application that generates the greatest amount of comment and
criticism. XMLC is an unusual Java tool. It was actually designed with the designer as well as the
developer in mind.

Making the Inevitable Changes

If the storyboarding of pages turns out to be relatively solid, then it is possible that the designer
and developer need only meet once, at the beginning of the project just following storyboard
approval, to move on with their respective development roles.

However, anyone who builds custom products for customers knows that change is inevitable.
XMLC was designed to support this reality. The use of id attributes achieves a certain level of
independence between the evolving environment of the interface and the underlying, server-side
Java code. Again, the designer must use the ids that the designer and developer agreed to with
respect to a particular markup page. If this rule is violated, the designer and developer must revise
both the page and the XMLC presentation object.

To maximize the independent relationship of designer and developer, our designer's goal is to
develop the mockup while requiring as little change as possible to the dynamic "topics" in the
page. In other words, the designer should make changes only to the layout, and not to the content
topics. This model is relatively fair in the real-world, given that customers often just want to see
changes to the look and feel or placement of existing components.

XMLC's auto-compilation capability further supports designer independence. Auto-compilation
means that a designer can make changes to a page, then by simply placing the reworked page in an
agreed upon "resource" director, automatically update the application with no intervention
required by the developer (except for a friendly "heads up"). Of course, this can be very dangerous
if handled without testing or an agreed-upon methodology.

At this point, we will defer the discussion of the impact of loose coupling on the application's
architecture itself. In Chapter 3, we'll visit this topic after we have had a chance to review other
presentation technologies, particularly JavaServer Pages.

Tip

A simple trick used by Java developers is to just get a list of the ids and their associated
elements in order to begin work right away. Because ids are position-independent, it doesn't
matter where the designer decides to place the ids within the page.

 31

XMLC for Servlet Programming

XMLC was originally developed for the Enhydra Application Framework (EAF) also known as
the "superservlet." EAF differs from standard servlet development by viewing the entire three-tier
application as one single (super)servlet. This approach makes Enhydra an excellent platform for
rapid development and deployment for projects where a lightweight server is more than sufficient.
We'll learn more about this in Chapter 5, "Enhydra, Java/XML Application Server," during our
review of the Enhydra environment.

At the same time, XMLC is also available for the standard servlet environment, following the
servlet 2.2 specification that is part of J2EE. In fact, Enhydra supports both EAF and standard
servlet development and deployment. Listing 2.3 shows how the XMLC SFAdminLogin object
can be served up by a standard servlet object.

Listing 2.3 Standard Servlet Using XMLC

public class SFAdminLoginPresentation extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException
 {
 XMLCContext xmlc;
 WelcomeHTML sfaLogin;
 xmlc = XMLCContext.getContext(this);
 sfaLogin = (SFAdminLoginPresentationHTML)

xmlc.getXMLCFactory().create(SFAdminLoginPresentationHTML.class);
 eventImage image = fetchEventHostLogo(eventHost);
 sfaLogin.getElementEventLoginLogo().setSrc(image.getName());
 sfaLogin.getElementEventLoginLogo().setWidth(image.width);
 sfaLogin.getElementEventLoginLogo().setHeight(image.height);
 sfaLogin.getElementEventLoginLogo().setAlt("Sponsored by the
wonderful folks from ACME");
 xmlc.writeDOM(request, response, sfaLogin);
 }
}

This topic will be covered at length in Chapter 10, "Servlet Web Applications."

Internationalization

As you might expect of a technology that has been nurtured and evolved by a worldwide open
source project, support for internationalization is a key feature of XMLC. One of the other
advantages of viewing HTML/XML pages as templates that can be loaded into your Java program
is that you can localize each template as well.

The template approach is good for more than device independence. In Figure 2.8, you can see that
a per-language/per-template approach gives your application the capability to load the appropriate
page object depending on the requested language.

Figure 2.8. Using XMLC templates to achieve localizations.

 32

Device Independence in an XML World

The discussion on internationalization maps well to the topic of device independence. Figure 2.8
could easily represent each page as a device specific page, say a browser or a mobile phone. In
today's Web world, the variation in characteristics of device types is incredible. Devices including
Web browsers, phones, car navigational units, and even kitchen appliances support different

• footprints
• markup languages
• levels of intelligence on the client side; for example, a J2ME phone versus a WAP WML

phone

Device support can be viewed as "template" support, where your program loads the appropriate
template depending on which device type was detected on the client side. This book will address
different strategies for implementing this mechanism in servlet development.

XMLC also provides subclasses of the DOM interface that are specific to supported markup
languages. These sub-interfaces make it possible to create type-safe template implementations. If

 33

you are addressing a new device that might not be supported by the list of XMLC sub-interfaces,
you can then simply treat the markup language as a generic template. You can still use XMLC.
You can still use id attributes to identify XML objects for easy access to specific areas of the
DOM tree.

The following list provides a few examples of the subclasses of org.w3c.dom, and some
example methods that are supported in the XMLC environment:

• org.w3c.dom.voicexml:

VoiceXMLAssignElement, VoiceXMLAudioElement, VoiceXMLBlockElement,
VoiceXMLBreakElement, VoiceXMLCatchElement, VoiceXMLChoiceElement,
VoiceXMLClearElement, VoiceXMLDisconnectElement,
VoiceXMLDivElement, VoiceXMLDocument, VoiceXMLDtmfElement

• org.w3c.dom.wml (WAP Devices):

WMLAccessElement, WMLAElement, WMLAnchorElement, WMLBElement,
WMLBigElement, WMLBrElement, WMLCardElement, WMLDocument,
WMLDoElement, WMLElement, WMLEmElement, WMLFieldsetElement,
WMLGoElement, WMLHeadElement, WMLIElement, WMLImgElement,
WMLInputElement, WMLMetaElement, WMLNoopElement, WMLOneventElement

• org.w3c.dom.xhtml:

XHTMLAbbrElement, XHTMLAcronymElement, XHTMLAddressElement,
XHTMLAnchorElement, XHTMLAppletElement, XHTMLAreaElement,
XHTMLBaseElement, XHTMLBaseFontElement, XHTMLBdoElement,
XHTMLBElement, XHTMLBigElement, XHTMLBodyElement, XHTMLBRElement,
XHTMLButtonElement, XHTMLCenterElement, XHTMLCiteElement,
XHTMLCodeElement, XHTMLDdElement

XMLC Benefits

Now that we have presented our first pass at the flavor of XMLC programming leveraging the
DOM specification, let's bring out some new and reviewed points about XMLC development:

• XMLC is built upon standards. In particular, XML and DOM are specifications of the
World Wide Web Consortium.

• XML/HTML templates are stored as Java objects. DOM and XMLC methods are then
applied to the template object.

• Flow of control is clearly separated from the page markup language and its content. In
other words, WML, HTML, and XML are manipulated as resources by Java logic.

• XMLC introduces no non-standard modifications, such as new tags or magic comments
where Java scriptlets are inserted in a markup page.

• XMLC leverages preprocessing of HTML/XML pages to add typed access methods to the
template object

• XMLC implements compile-time checking to ensure that pages are well-formed and valid
before they are executed at runtime.

• XMLC supports the capability to leave mocked-up code inside of page templates so that
there is one page involved in the product lifecycle. There is no need to maintain two

 34

parallel documents: one with mocked-up data for the customer to review, and another
with the embedded Java code. There is no embedded Java code with XMLC.

Summary

XMLC turns markup pages of HTML and XML into DOM templates that can then be loaded at
runtime depending on the required language, type of device (for example, Nokia WAP phone
versus Motorola J2ME phone), or any other criteria that is relevant to your application and the
audience you support. Once loaded, your application can then manipulate the contents of the
DOM tree, taking advantage of the XMLC-generated direct access convenience methods created
using id attributes.

We have introduced the notion of what it means for a designer and Java developer to leverage
XMLC to work together in a professional application development scenario. Clearly, there are
guidelines for the designer to follow in order to maximize the benefit of XMLC development;
however, they are very simple and do not bog down the process if significant changes are required.
The inherently loose coupling made possible by the reliance of XMLC on the standard
HTML/XML id attribute beneficially impacts both architectures and project roles. Furthermore,
the flexibility of XMLC development enables many custom strategies. There is no one right path
for projects to take.

For some, DOM programming can be a real challenge. Luckily, 95% of XMLC is about elements
and attributes, reducing the amount of DOM knowledge required. Although new GUI libraries are
emerging, such as Barracuda, understanding DOM-level XMLC programming will assure your
programs of the highest adaptability in a world of significantly different client-side devices.

 35

Chapter 3. Presentation Technologies
IN THIS CHAPTER

• Publishing Frameworks for Adapting to the Future
• Model-View-Controller
• Servlet Presentation Programming
• JavaServer Pages
• JSP TagLibs
• Cascading Style Sheets
• XSLT
• Cocoon
• Final Comparative Discussion
• Templates, MVC, and XMLC
• Summary

In the world of Web development, there are many, many ways to skin a cat. Or, in our case, skin a
Web application. Perl, Tcl, Java, Python, ASP, and many other languages and tools bring different
strategies for building Web applications to the table. In the case of Java alone, there are many
frameworks that leverage some level and combination of Java, XML, and/or XSLT.

Each strategy represents strengths and pitfalls that will vary depending on your background,
training, development style, prejudices, preferences, and long-term goals. No one technology
represents a "boil the oceans" solution. The only way to select the right tool is to survey the field
and make an informed decision. This chapter will attempt to introduce the models and strategies of
some of the nearest competitive technologies to Enhydra XMLC.

The presentation-building strategies we'll introduce include simple servlet programming,
JavaServer Pages, XSLT, and Cocoon. In this non-exhaustive survey, the goal will be to flesh out
some of the unique value in each technology for generating Web presentations. Where the
opportunity presents itself, I'll throw in some comparison comments with XMLC to capitalize on a
particular aspect of presentation development. In doing so, I hope to give you a better backdrop
for understanding XMLC's world through reasonable comparison and contrast.

Note

All the technologies reviewed in this chapter are also supported in Enhydra 3 and 4, including
XSLT. The lone exception is Cocoon, which can easily be integrated into the Enhydra
environment.

Publishing Frameworks for Adapting to the Future

The dynamic beginnings of the Web started with Perl CGI scripting. Perl scripts heavily leveraged
print statements to spit out hardcoded HTML. Servlet programming and JavaServer Pages do
much the same. It wasn't until later that developers started to see the limitation to this approach.
When it was time to make changes to the presentation, what was fun to build was not as fun to
maintain.

Perhaps this style of generating markup language is coming to an end, as the development world
moves to adopt device-independent strategies in preparation for the black box of a device-crazy

 36

world. Is your application prepared to adopt yet another set of clients enabled by yet another W3C
specification? After all, HTML is no longer the only game in town.

The good news is that there are plenty of technologies and publishing frameworks (explained in
detail later in this chapter) from which to select. From simple Web page presentations to
generating PDF files on the fly, there's a framework for you. Even JavaServer Pages has addressed
many of its criticisms with the introduction of Taglibs. And, if you are prepared to add an entirely
new dimension of programming to your projects, Apache's Cocoon is a promising new technology
to watch as well.

All these approaches can be categorized into one of three camps. Of course, simple servlet
development is the least structured style of presentation development, where the developer acts as
HTML designer and developer, interweaving hard-coded HTML print statements side-by-side
with other Java logic.

Template engines, on the other hand, permit the document to drive. At least they appear to be a
step in a document-oriented direction. JSP, WebMacro (www.webmacro.org), and Apache's
Velocity are examples of template strategies that insert markup-generating logic between the lines
of static markup language. Taken from Velocity's Mud Store example, the following example of
Velocity Template Language (VTL) reflects the nature of template engines to insert an
intermediate, embedded language directly in the markup document:

<HTML>
<BODY>
Hello $customer.Name!
<table>
#foreach($mud in $mudsOnSpecial)
 #if ($customer.hasPurchased($mud))
 <tr>
 <td>
 $flogger.getPromo($mud)
 </td>
 </tr>
 #end
#end
</table>

Finally, there's DOM manipulation. This is also a templating mechanism, but it introduces an
object-oriented way of representing the template as a document tree that can be manipulated "from
afar" by Java logic, thus avoiding the error-prone embedded logic approach, in addition to other
limitations. Cocoon, XSLT, and XMLC are implementations of the DOM approach.

Presentation Versus Publishing Frameworks

Cocoon and others refer to their technology platforms as publishing frameworks. Cocoon, for
example, can generate XML, XHTML, and PDF documents from source XML files. XMLC can
do the same, including the generation of XML-based SVG (W3C's Scalar Vector Graphics). There
is another class of technology beginning to emerge that focuses on interactive user interfaces.
These presentation frameworks resurrect the environment of Swing and Motif, repositioning the
topic as one of interacting with the user through user interface components, as opposed to altering
and presenting documents.

Jakarta's Struts and Apache's Turbine are examples of a new category of frameworks that are more
presentation-oriented. Enhydra's Barracuda is an exciting new project that addresses the
presentation framework category for XMLC. For the XMLC community, Barracuda is the one to
watch for those seeking a componentized, event-driven GUI library strategy for generating Web
presentations.

http://www.webmacro.org/

 37

Our perspective will ask the questions, "What do all these technologies mean to real-world
development by professional design and development organizations? What do they mean in terms
of product lifecycle, time to market, and life in general? And, of course, how do they compare
with Enhydra XMLC?" Keep the following points in mind:

• Cutting edge Web presentations require high-end designers, commonly working with a
third party, highly talented "backend" Java development team. What will the chosen
technologies require in terms of training, and how will these technologies impact
cooperative development, particularly if the teams are separated by a significant distance?

• The customers of these presentations are more savvy now. They know there are
technologies for separating logic and markup language. Add to that corporate IT's
insistence that the technology you use comply with "standards."

• The framework you choose will affect your ability to react quickly to changing
requirements. Cocoon is very cool, but how long will it take a newbie to ramp up? Is it
good enough to know Java, or will they need to learn two languages?

Let's now spend the rest of this chapter taking a look at some pretty interesting strategies for
generating Web presentations. Again, we're going to do this for the purpose of finding ways to
better explain XMLC development and how it differs from other strategies. By the end of the
chapter, when all the smoke has cleared, we'll be ready to spend the rest of this book in XMLC
development.

Model-View-Controller

You can't pick up a book on modern Web presentation development without having to wade
through a discussion about Xerox Parc's Model-View-Controller (MVC) design pattern. MVC is a
useful interpretation of a strategy for presentation architectures and their place within the larger
application architecture.

MVC was originally defined to reduce the programming effort required by applications that had to
render the same information in more than one presentation format. MVC is also a good model for
discussing the isolation of functional roles within any object-oriented application.

The impact of an MVC architecture addresses some of the more interesting real-world project and
product issues:

• Long-term application maintenance
• Insulating business data generation from the display
• Defining a presentation architecture that can support a variety of client types, from

browsers to phones, with minimum impact to the application's overall implementation
• Isolating functional roles

Figure 3.1 illustrates a generic MVC and the relationship of the model, view, and controller.

Figure 3.1. J2EE Blueprints' interpretation of Model-View-Control.

 38

The view is responsible for interacting directly or indirectly with the client. In the case of browsers,
the view is delivered as-is to the client. For J2ME, Flash 5, and other "smart clients," the view is
delivered as raw data subject to display by the client display engine. The view conveys one or
more events reflecting the user's intent (for example, edit, browse, delete), and any data associated
with it, such as a login user name and the password, is conveyed via HTTP request. Other data
that the controller will be interested in will tell you about the nature of the client—for example,
whether the client is a simple Netscape browser or a small J2ME phone.

The model is responsible for tracking and maintaining the application's state. It generates an
asynchronous event when something interesting has happened, such as a change in the state of
information. The model couldn't care less about what is done with the information that it provides.

The controller is the traffic cop logic that enables the view to interact with the model. The
controller handles the events that put the model into edit mode, browse mode, and so on.

Applying MVC to Presentation/Publishing Technologies

Sun did a great job implementing MVC with the Java Swing API and its component-style
implementation. Swing is being used as a great example of an MVC implementation for the
Barracuda project, which is part of the Enhydra suite of open source projects.

But this discussion is not going to shove XMLC onto the MVC model. In fact, we're going to tell
you why XMLC doesn't reflect the MVC model and why that's a good thing.

The great irony is that same company that brought us Swing is touting JSP as what is really an
"MVC-ish" technology. Sun has watered down the definition and intent of MVC, moving it from a
component model to a more granular discussion of moving grosser objects, such as pages, around
in a largely server-side application.

This makes a lot of sense as you become familiar with JSP. As we cover JSP in this chapter, it will
become clear that this is a presentation strategy that was defined with the "server-side view,"
where Web application programmers abound. If you've been in the industry awhile, you've
probably observed that there is a large difference in orientation between server-side, operating
system developers, and client-side desktop application developers. Somewhere in between, there
are true client-server developers.

JSP was really defined to address the large market of server-side developers who have never really
been client-server developers and therefore have little client-side experience. Embedding Java in
markup language is really something that speaks to the server-side developer. It's to Sun's credit

 39

that they've been able to map a client-server-like model, MVC, onto a very server-side technology,
JSP.

Servlet Presentation Programming

The servlet environment is responsible for integrating all Java application servers with the outside
world. It was, after all, the publishing of the servlet API that gave Web servers the capability to be
extended with object-oriented Java functionality. Although many developers are just now entering
the world of servlet development, a significant portion of the Java community has expanded its
attention to consider what it means to support modern application servers that give the developer
the capability to create multi-tier application architectures. Even the application servers
themselves are moving past proprietary APIs to well-defined standards reflected in specifications,
such as J2EE.

Basic servlet programming, with the introduction of standard Java print statements, can be quite
effective for building CGI scripting-like presentations. Let's face it. Sometimes you just want to
get a simple job done, and the point of your task is to create something quick and dirty without
requiring the services of an HTML designer. Embedding HTML strings directly into a servlet is
one way to quickly generate a markup presentation, especially if your goal is to build a one-off
application in a hurry.

Servlet programming for creating presentations is very reminiscent of Perl CGI programming.
HTML is delivered by out.print() and out.println() methods. Logic is clearly
intermingled with markup language and content. In scenarios like this, there's usually no
requirement for a compelling Web presentation or a long product lifecycle.

In an example of extremely tight coupling that might be cynically referred to as strangulation by
the integration of markup and programming logic, Listing 3.1 shows markup language as
explicitly printed from Java logic.

Listing 3.1 Simple HTML Presentation Development with Servlet Programming

// Servlet imports
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

// Standard imports
import java.io.*;

public class WelcomeServlet extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException
 {
 response.setBufferSize(8*1024);
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println("<HTML>");
 out.println("<HEAD><TITLE>Enhydra XMLC
Programming</TITLE></HEAD>");
 out.println("<BODY>");
 out.println("<P>"Welcome to today's class"</P>");

 40

 out.println("</BODY>");
 out.println("</HTML>");

 if (scheduleDay.equals("Saturday") {
 response.reset();
 out.println("<HTML>");
 out.println("<HEAD><TITLE>Servlet
Programming</TITLE></HEAD>");
 out.println("<BODY>");
 out.println("<P>"No class on Saturday"</P>");
 out.println("</BODY>");
 out.println("</HTML>");
 }
 }
}

Servlet Web application development was greatly improved with the introduction of the servlet
2.2 specification, which introduced the notion of response buffering, giving the program the
capability to flush the resultant markup page only when the processing of the page has been
smoothly concluded.

If an error is encountered, the servlet has the option of taking a different path, such as creating a
friendly HTML page indicating the nature of the error encountered. In either event, the servlet
now has the capability to pre-build the page before deciding to flush it back to the client or not.
Listing 3.1 also shows how the method reset() can be used to reset the output buffer.

The presentation strategy that pure servlet programming implements is relatively simple, and
should be familiar to long-time Web developers who have used Perl sometime in the past.

Note

Yes, you can use Enhydra for standard servlet development. Enhydra supports servlet 2.2 (as
well as JSP 1.1 development). All the examples in this chapter were tested using Enhydra.

The implications of this style of presentation development are obvious. Servlets do not benefit
from the presentation-specific features of JSP and XMLC. Usually, the page is designed by the
trial and error method of directly typing HTML tags, or by the manual process of transposing the
output from an HTML design tool into the source file.

There really is no notion of a template mechanism in this style of presentation development. For
instance, there's no dynamic loading of a template depending on what type of presentation device
is detected.

This kind of presentation development should be reserved for only the simplest of dynamic Web
applications. If the application starts to take on a life of its own, switch to JSP or XMLC
immediately. These presentation technologies are so easy to use and are so well supported by
design tools, there's little reason left for presentation development by pure servlet programming.

JavaServer Pages

JavaServer Pages (JSP) is an interesting, and sometimes controversial, strategy for developing
Web presentations. Whether or not you are a fan of JSP, it is a de facto standard by virtue of its
incorporation into the Java 2 Enterprise Edition (J2EE) specification, not to mention the very large
audience of JSP developers that exist today. Over time, it has been extended from the simple

 41

embedding of Java statements within an HTML page to the latest version, which now includes
support for custom tags, or taglibs.

The distinguishing attribute of JSP is flexibility. A developer has the option of inserting Java
directly into HTML or leveraging taglibs to achieve better separation of markup and Java logic.
For our purposes, we'll start with the standard examples of JSP, later evolving them to introduce
the topic of custom tags.

The name "JavaServer Page" somewhat implies its role. Java is inserted into a markup page for the
purpose of generating dynamic content. The result is a hybrid of HTML or another markup
language such as XML or WML intermixed with JSP tags and/or markup comments incorporating
contiguous and non-contiguous calls to the Java language.

JavaServer Pages are not processed until the first invocation of the Web application. The
algorithm for serving a page from a JSP environment is thus:

1. The request for a JSP, as generated from a client, comes from the Web server.
2. If the request has been seen before, skip to Step 4. If the JSP has never been requested

since the application server was booted, the JSP is translated into a Java servlet source file.
This translation is also carried out by a reloading mechanism if the JSP has been re-
introduced by the developer.

3. The class is compiled into a Java class.
4. The servlet class is then loaded into the Web/servlet container for execution.
5. The servlet streams HTML back to the Web server and onto the client.

All the embedded Java code is turned into one big method in the generated servlet. The URL
request from a client might look something like

http://localhost:9000/myDemoapp/showChildren.jsp?value="Claire"

The servlet runner has been configured to associate the URL with the specific JSP, handing the
request over to the Web container. Assuming the requested JSP page has been used before, the
JSP engine then locates and loads the Java class that matches the name showChildren.class.
If it's the first time the page has been requested, the JSP engine generates the class from the
runtime compilation of the JSP file.

Inside the Web container, an application servlet is loaded into execution. A call is made to the
init() method in order to perform last-minute setup and housekeeping chores, such as loading
configuration information, before the servlet begins to accept requests. Eventually, calls to
jspInit() launch the JSP-generated servlets. And for each HTTP request thereafter, the servlet
creates a new thread to run service(). For JSP servlets, jspService(), a direct product of
JSP page compilation, is called by service().

JSP Expressions, Declarations and Scriptlets

JSP is most well known for its capability to embed Java code directly in the markup page. For
example, the following code fragment demonstrates the use of the JSP <%= and %> tags to insert a
JSP expression. The first statement is actually a JSP directive, explained later. A JSP expression
returns a string value to a response stream:

<%@ page import="java.util.Date, java.text.DateFormat" %>
<html>
<body>
<P>Welcome to JSP development

 42

where the time is: <%= DateFormat.getTimeInstance().format((new
Date()) %>
</body>
</html>

In expressions, you'll note the absence of the statement-ending semicolon. This is a JSP-ism that is
required only of expressions, not of declarations or scriptlets. The golden rule of JSP
programming is that every JSP expression must return a string or a primitive. If any part of an
expression returns an object, the toString() method is invoked.

Listing 3.2 illustrates the use of expressions, declarations, and scriptlets. A declaration is used to
define an array of daughters and their ages. A scriptlet is then used to traverse the array of
daughters, generating rows of cells with each daughter's name and age. The actual name and age is
embedded in the cell with two JSP expressions.

Listing 3.2 Expression, Declaration, and Scriptlet Usage in a JSP Page

<%@ page contentType="text/html;charset=WINDOWS-1252"%>
<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=WINDOWS-
1252">
<META NAME="ENHYDRA" CONTENT="ToolBox">
<TITLE>
Server side redirect
</TITLE>
</HEAD>
<BODY>
<%! String daughters[][] = { { "Amanda","16"} , { "Claire","1"} ,
{ "Nicole","11"} } ; %>
<h1>Dynamic demo using static data</h1>
<TABLE BORDER=1>
<%
for (int i=0; i<daughters.length;i++){
%>
 <TR><TD><%= daughters[i][0] %></TD>
 <TD><%= daughters[i][1] %></TD></TR>
<%
}
%>
</TABLE>
</BODY>
</HTML>

Note

Although modern HTML design tools can now work comfortably with hybrid pages of JSP
and HTML, the issue of mocking up meaningful prototypes still requires the designer to build
a parallel document for customer review. The designer must then ensure that the two
documents are kept in sync. As discussed earlier, support for included mocked-up content is a
distinguishing feature of XMLC.

JSP Directives

JSP directives, identified by their surrounding <%@ and %> tags, are instructions and information
passed to the JSP engine during page translation and compilation. This is how JSP pages influence
control over how the servlet is built. JSP directives take effect at the time that the JSP page is

 43

translated into a servlet. Therefore, once the servlet exists, the directive can no longer be changed
without forcing the servlet to be rebuilt.

The page directive deals with such topics as error page re-direction, importing of Java classes, the
setting of content type and the setting of the output stream buffering and the associated
autoFlush flag. The following page directive indicates that the JSP will generate output for an
SVG (Scalar Vector Graphic) viewer:

<%@ page contentType="text/svg-xml" %>

The include directive notifies the servlet container to perform an inline inclusion of another JSP
page. This approach can be used to minimize the obvious Java presence in a page, thus reducing
the potential for errors created by HTML designers:

<%@ include file="menuBar.jsp" %>

File inclusion happens only when the JSP is translated into a servlet. In the example, if any
changes are made afterwards to menuBar.jsp, no effect will be seen.

The taglib directive is best known to XMLC programmers, because they tend to hear the phrase
"JSP taglibs are just like XMLC." This topic deserves the attention we give it later in the chapter.

JSP, Servlets, and JSP Implicit Objects

The topic of JSP implicit objects is an interesting one. These are Servlet API methods that are
made available for use by scriptlets via wrappers. Each object is listed with its associated
implementation class (in parentheses):

• request (HTTPServletRequest)
• response (HTTPServletResponse)
• application (ServletContext)
• config (ServletConfig)
• page (Object)
• out (JspWriter)
• exception (Throwable)
• pageContext (PageContext)
• session (HttpSession)

These are described as JSP features, but all they really are access points to the underlying servlet
container. There is nothing unique about JSP that makes the information they contain available
only to the JSP environment.

JSP Taglibs

To say the least, standard JSP programming is a clear example of tight coupling between two very
different languages and two very different development practices, namely HTML and Java. The
good news is that over time, modern HTML design tools such as Macromedia's Dreamweaver and
Adobe's GoLive, have learned to handle non-standard HTML tags. The result is that the design
community can now interact more directly with Java developers.

 44

Supporters of JSP maintain that JSP helps to maintain the healthy separation of HTML designer
and Java roles. To make this claim, they are really relying on "best practices" to suggest a heavy
reliance on encapsulating functionality inside Java Beans. Some would consider that claim to be a
bit of "marketecture," but let's take a look at custom tags, the next great hope for true separation of
content from logic.

Better encapsulation and separation of markup from programming logic is the goal of JSP's
Custom Tag Libraries, referred to as taglibs. This capability has spawned many organized efforts
including Apache Struts and, for better or worse, product-specific library definitions. Before we
talk about the implications of this newest wrinkle in JSP development, let's review how it works.

Taglibs enable the indirect embedding of Java logic via the use of developer-defined HTML/XML
tags. A custom tag may have a body or no body. Examples here leverage a possible tag library
called "showFloor:"

<showFloor:displayBoothInfo customer="ACME"/>

or

<showFloor:displayBoothDescription>
This is a rectangular booth in the middle of the floor.
</showFloor:displayBoothDescription>

It's even permissible to use JSP expressions to complement custom tags:

<showFloor:login date="<%= today %>" />

Table 3.1 lists the types of tags and the methods as defined by the tag library interface that the
developer must implement in order to process the tags. For example, if you are writing a tag that is
going to process the content within the body of the tag, such as the preceding
showFloor:displayBoothDescription tag, then you must implement doInitBody()
and doAfterBody().

Table 3.1. Tag Handler Types and Their Required Methods
Tag Handler Type Methods
Simple doStartTag, doEndTag, release
Attributes doStartTag, doEndTag, set/getAttribute1…N
Body, No Interaction doStartTag, doEndTag, release
Body, Interaction doStartTag, doEndTag, release, doInitBody, doAfterBody

Creating a Custom Tag

Creating a custom tag requires the creation of a Java-based tag handler that implements the tag.
With a tag handler in hand, you must then associate the JSP with a tag library descriptor file,
cross-referencing the tag library with the custom tag. Creating custom tags requires two significant
steps:

1. Create the tag handler.

The tag handler is the actual core of your tag library. A tag handler will reference other
entities, such as JavaBeans. It has full access to all the information from your page using
the pageContext object. It is handed all the information associated with the custom tag,

 45

including attributes and body content. As processing completes, the tag handler sends the
output back to your JSP page to process.

2. Create the Tag Library Descriptor (TLD).

This is a simple XML file that references the tag handler. The servlet container is told
everything it needs to associate the custom tag with the tag handler file. The markup
fragment that follows shows how the JSP indicates the location of the TLD file using a
tag library declaration:

<% taglib uri="WEB-INF/showfloor.tld" prefix="showfloor">

This defines the namespace, showfloor, that is associated with the tag lib dictionary,
showfloor.tld.

Keeping true to the JSP attribute of flexibility, custom tags can be used in any manner of
organization. For example, they can implement control flow behavior, such as the jLib:for
custom tag in the example in Listing 3.3. This listing is taken from the Apache Jakarta taglibs
project.

Listing 3.3 Using Jakarta's Taglib for Iterating an Array

<html>
<body>
<%@taglib uri="http://jakarta.apache.org/taglibs/utility"
prefix="jLib" %>
<%! String [] color = new String[5]; %>
<%! String [] values = { "yellow", "red", "green", "blue", "pink"} ;
%>
<jLib:for varName="i" iterations="5">
 <% color[i.intValue()] = values[i.intValue()]; %>
</jLib:for>

<jLib:for varName="j" iterations="<%= color.length %>" begin="2" >
 <jLib:If predicate="<%= j.intValue()==3 %>">
 <%= color[j.intValue()] %>
 </jLib:If>
</jLib:for>

</body>
</html>

You might ask, "Why not just write a Javabean that accomplishes similar results?" The answer is
that taglibs are a mapping of Java functionality to the HTML/XML markup language format. It
supports the "bindings" necessary for Java to participate in the XML structure. This becomes
necessary in the absence of a leveraged DOM model.

The apparent value of taglibs is its capability to support standard, reusable functionality, as long as
the industry is able to identify those standards. Sun's Java Community Process is attempting to
address that goal with a committee of leading application server vendor representatives
participating in JSR #52, "Standard Tag Library for JavaServer Pages."

Back-Filling in the Evolution of the Web

The Web is littered with a great many examples of back-filling to compensate for the
fact that the Web infrastructure was really best-suited for "newspaper-style" publishing

 46

abilities, not highly dynamic, multiple-tier application development, deployment, and
management. For example, browsers are inherently stateless. That drove the introduction
of cookies as between-URL tokens that could help the CGI script "remember" what
occurred before.

JSP taglibs are a similar notion. JSP was reverse engineered with taglibs in order to
support better separation of presentation and business logic. HTML as an XML
language is another one. Instead of fixing the widely deployed HTML, XHTML is the
safer road taken.

Cascading Stylesheets

Cascading stylesheets (CSS) are not exactly a full blown publishing framework. Instead, they are
used in conjunction with XML documents to associate stylistic behavior with elements of the
document. Instead of hard-coding a font element in an HTML or XHTML document, you can
instead reference a stylesheet component via a style attribute that contains the font information.
The following XML fragment demonstrates how you can point your XML document to a CSS:

<?xml version="1.0"?>
<?xml-stylesheet type="text/css" href="wml.css">

So, if this is all you can do with stylesheets, why am I even discussing them here? The answer is
that stylesheets are an essential component in supporting even more loose coupling of content and
presentation. For example, if you reserve the style issues to a CSS, the Java developer doesn't have
to worry about whether a font is to be red or green. Instead, the developer focuses on, for example,
setting the style reference, a selector, that references style information in the stylesheet.

In CSS, a selector represents one or more style declarations. For example,

title { font-family: "Garamond"; font-size: 18; font-color: red }

Without going into great detail here, CSS selectors have the capability to reach far into the
hierarchical organization of an XML document to apply specific style rules, such as "second level
paragraphs inside a Level 2 heading."

Let's leverage the anticipated ShowFloor application and come up with an administrative table that
tracks which booths are occupied and which are not. Listing 3.4 is an HTML file that is ready for
compilation by the XMLC compiler. I've used font color to indicate if the booth has been assigned
or not. Red represents the fact that the booth is still available. Black represents that it has been
assigned.

Listing 3.4 Using Cascading Stylesheets to Remove Presentation Information from
HTML

<html>
<head>
<title>Untitled Document</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-
1">
<style type="text/css">
<!--
.unassigned { font-family: Arial, Helvetica, sans-serif; font-size:
12px; color: red}

 47

.assigned { font-family: Arial, Helvetica, sans-serif; font-size:
12px; color: black}
-->
</style>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<table width="50%" border="0" cellspacing="0" cellpadding="0">
 <tr><th>Booth Status</th></tr>
 <tr>
 <td id=boothNumber class="boothStatus">123</td>
 </tr>
</table>
</body>
</html>

In this listing, two stylesheet directives are embedded in the HTML document, though they easily
could be removed and stored in an associated file and referred to by a link, as illustrated earlier.
Deeper in the HTML, I've identified the targeted table cell in which to insert dynamic content
reflecting the actual booth number and its status. boothStatus will be overwritten during
runtime with the stylesheet selector name assigned or unassigned.

Listing 3.5 Java Presentation Logic for Updating the HTML Page with Current Data

public void run(HttpPresentationComms comms)
 throws HttpPresentationException, IOException {
 BoothStatusHTML boothStatus;
 // A couple of hardcoded values to be replaced later during
development.
 String boothNumber = "437";
 boolean boothOccupied = true;
 boothStatusPage =
(boothStatusPageHTML)comms.xmlcFactory.create(BoothStatusHTML.class);
 // Use xmlc generated method to update the cell's text node
with correct booth #.
 boothStatusPage.setTextBoothNumber(boothNumber);
 // Use another xmlc generated method to fetch the child node
 // inside the current element.
 HTMLTableCellElement address =
boothStatusPage.getElementBoothNumber();
 if (boothOccupied == true) {
 cell.getAttributeNode("class").setValue("assigned");
 } else {
 cell.getAttributeNode("class").setValue("unassigned");
 }
 comms.response.writeDOM(boothStatusPage);
 }

Listing 3.5 shows a partial, hard-coded example of possible presentation logic manipulating of the
HTML page. The HTML page is represented as a template object, BoothStatusHTML, as
generated by the XMLC compilation. It represents the DOM class and convenience methods that
might be used to manipulate the DOM. First, the example updates the cell's content with the "real"
booth number, hard-coded for this example. Second, the status of the booth is determined and the
class attribute is set to point to the correct CSS selector. The generated HTML will include the
fragment

<td id=boothNumber class="assigned">437</td>

 48

When leveraged with any number of presentation technologies, including XMLC and JSP, the use
of CSS grants more control to the designer and removes more "decisions" and hard-coding of
stylistic information, such as fonts, from the server-side code.

XSLT

It's only natural to transition from CSS to XSLT (Extensible Stylesheet Language for
Transformation) programming. Although CSS helps us assign styles to style-free XML content in
a passive, rule-based manner, XSLT actually rolls up its sleeves and restructures an XML
document. There are three ways to render an XML/HTML document:

• Associate CSS declaratives with the markup document, and rely on the browser to
process the style instructions.

• Use XSLT to transform the document using XSL, giving even greater control over how
the document is to be rendered spatially and stylistically. This can occur on either the
client or server.

• Focus on server-side processing, using XSLT (or Java programming) to transform the
document completely to HTML, XHTML, or WML.

XSLT has gained popularity as a nifty, lightweight programming language for transforming XML
into a variety of presentations. It also plays a significant role in the back end, where "data
integration" is a hot topic in B2B and old-style EAI applications. XSLT transforms or re-purposes
industry-defined XML documents generated by a remote application into a format that is familiar
to the local host application.

XSLT is the most successful aspect, so far, of the XSL standard from the W3C.org folks. Much of
the fanfare around XSL was the FO (Format Object), which has yet to find a large audience other
than with the Cocoon community, discussed later. Instead, it's the XSLT mechanism that is ruling
the day. People want what is useful and compelling. XSLT is that kind of technology. FOs in
many ways are redundant with the functionality of CSS, having, in fact, incorporated some of the
CSS functionality, as illustrated in Figure 3.2.

Figure 3.2. The somewhat redundant relationship of CSS to XSL, both products of
W3C.org.

Illustrated in Figure 3.3, XSLT can be used to transform a single XML document into multiple
documents that are specific to the manufacturers, for example, that use its contents to build
products. For example, each shoe manufacturer might have its own way of defining a shoestring.
Adidas might deal with shoestrings described as

http://w3c.org/
http://w3c.org/

 49

<?xml version="1.0" encoding="UTF-8"?>
<Shoestrings>
<shoestring color="white" length="12" units="inches"/>
<shoestring color="blue" length="16" units="inches"/>
<shoestring color="blue" length="12" units="inches"/>
<shoestring color="green" length="10" units="inches"/>
</Showstrings>

whereas Nike might recognize the shoestrings in their own format of

<shoe>
<string>
<color>white</color>
<length>12</length>
<units>inches</units>
</string>
</shoe>

Figure 3.3. XSLT re-purposes a single document to suit multiple client applications.

XSLT can easily make the transition from one format, perhaps based on a shoe industry
consortium's official XML standard, to one that they prefer for their legacy applications.

Note

Speaking of shoes, Customatix.com is one of Enhydra XMLC's first and most successful
commercial deployments. Built as an Enhydra-powered site for former executives from
Adidas, this site uses XMLC and a single Java Applet to give the visitor the capability to
select a basic shoe or boot model, then completely alter it, colors, materials, graphics and all.

http://customatix.com/

 50

XMLC is also used to deliver build instructions in XML format for the manufacturing of the
customer's shoes.

How XSLT Works

Representing the form of an instruction tree, an XSLT document drives an XSLT processor to
turn an XML document (source tree) into another XML document (result tree). Collectively,
XSLT instructions represent a special type of XML document as indicated by the following lines
of an empty XSLT document:

<?xml version='1.0'?>
<xsl:stylesheet version='1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
...
</xsl:stylesheet>

Template expressions guide the transformation process using Xpath naming to identify one or
more nodes in the source tree for treatment. A template rule is represented by the XML element
<template>. The template element's attribute represents the selection process by which the
template rule identifies the level of the source tree.

There are 34 elements supported by one or more attributes. Some of them are clearly program
logic-like commands such as for-each, if, otherwise, sort, when, and variable. But
even restricting your uses of XSLT elements to only a few, particularly apply-templates and
value-of, impressive transformations are possible.

XSLT uses Xpath to reference a relative position in the source tree based on your current position.
In the following example, the template element, using the match attribute, identifies all the
Xpaths to every occurrence of the element units in our earlier shoe string example:

<xsl:template match="shoestring/units">
<units>cm</units>
</xsl:template>

In this example, the purpose of matching every units element is to generate a new result tree that
uses centimeters instead of inches to determine the shoestring length. But of course, this is only a
partial conversion, because we haven't addressed the conversion of the length itself.

Listing 3.6 simply constructs an HTML table of shoestring colors, lengths and length units.
Listing 3.7 is another version of the same transformation, with the exception of the introduction of
shoestring lengths as calculated in centimeters.

Listing 3.6 Creating an HTML Table Shoestring Attribute

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
<xsl:output method="html" indent="yes" />
<xsl:template match="Shoestrings">
 <table>
 <tr><th>Color</th><th>Length</th><th>Units</th></tr>
 <xsl:apply-templates />
 </table>
</xsl:template>
<xsl:template match="shoestring">
 <tr>

 51

 <td>
 <xsl:value-of select='@color'/>
 </td>
 <td>
 <xsl:value-of select='@length'/>
 </td>
 <td>
 <xsl:value-of select='@units'/>
 </td>
 </tr>
</xsl:template>
</xsl:stylesheet>

Listing 3.7 Updating the Length Value to Reflect the Units Change

<xsl:template match="shoestring">
 <tr>
 <td>
 <xsl:value-of select='@color'/>
 </td>
 <td>
 <xsl:value-of select={ '@length' / 2.54} />
 </td>
 <td>cm</td>
 </tr>
</xsl:template>
</xsl:stylesheet>

Note

XSLT support is incorporated into Enhydra by virtue of Apache's Xalan XSLT processor. The
examples given here were tested using Lutris Enhydra 3.5.

Do the roles of XSLT and XMLC overlap? You bet. But there are differences that might drive you
one way or the other. For one, XSLT performance can be a problem, particularly as you come up
with more complex transformations. Secondly, if you're in a Java environment running XSLT
transformations, error handling can be a bit tricky. To avoid this situation, upfront testing of
anticipated transformations is a must.

XSLT Summary

On its own merits, XSLT is clear, at times elegant, and like Perl, appears cryptic enough to
fascinate the nerd in all of us. XSLT processing has emerged as a serious candidate enabling
XML-based presentations to adapt on-the-fly to all those mobile phones and other yet-to-be-
defined devices that will eventually chat with application servers. There is little that XSLT cannot
do to modify an XML document. XSLT contains all the capability to make conditional tests, sort
data, and leverage built-in functions for conducting serious transformations.

XSLT can be used in a number of roles, including processing XML for presentations. For example,
different XSLT instructions can be used, depending on the device that is being displayed to. The
Enhydra application server incorporates the Apache Xalan XSLT parser, making it possible to
combine Java development, XMLC programming, and XSLT transformations.

An XSLT strategy appears to be a good one if you don't mind supporting multiple languages for
your application, namely Java and XSLT. If that's not an issue, be sure to consider performance
characteristics of XSLT processing, because it does not benefit from fast Java compilers.

 52

I thought that Erik Ray, author of O'Reilly's Learning XML said it best: "To do anything
sophisticated with XSLT, we have to move around the document as nimbly as a monkey in the
tree."

Cocoon

Cocoon is a very interesting project that has both a great deal of promise and a huge challenge to
make itself relevant to a large audience. Unlike JSP and much like XMLC, the Apache Cocoon
project views the world through the eyes of XML. But rather than rely on Java for DOM
manipulation as XMLC does, Cocoon goes the route of emergent technologies XSLT and
formatting objects. At the same time, XSP does indeed take on JSP-like features when embedded
Java manipulation is an option.

How wedded to XML is Cocoon? So much so that the Cocoon project page points out that Cocoon
is not appropriate for generating standard HTML output, because HTML is inherently not well-
formed XML. Obviously, XHTML support in future browsers will be important for the successful
adoption of Cocoon.

The Cocoon framework supports three steps of content and presentation delivery:

1. XML creation addresses the role of the content owners. These are the experts in their field;
for example, fly fishermen writing about fly fishing.

2. XML processing takes place. This is where programming logic is applied to the content,
such as fetching descriptions and prices for very expensive fishing lures.

3. XSL rendering delivers the end result to the client, using an XSL stylesheet to transform
the presentation into HTML, WML, or other popular formats.

XSP for Dynamic Content Creation

At first glance, XSP (eXtensible Server Pages) appears similar to JSP. Its role is to complement
the static content contained in XML documents with dynamic content as fetched, for example,
from a database or a live news feed. However, as you'll soon see, XSP is a more flexible, Java-
independent language that melds more gently with its host markup language.

If you think XSP markup looks suspiciously like a custom tag from a JSP tag library, you'd be
right. Cocoon has its own implementation of tag libraries. This is how the Cocoon project can
maintain that it separates logic for the creation of dynamic content from markup, thus respecting
the needs for the roles of designers and developers. Tag libraries remove the complete reliance on
procedure-based XSP code, shown in this example:

<table>
<xsp:logic>
for (int i=0; i < items.length; i++) {
<tr>
<td>
<xsp:content>
<xsp:expr>items[i].getName()</xsp:expr>
</xsp:content>
</td>
</tr>
}
</xsp:logic>
</table>

 53

In this example, XSP cannot escape the fact that XML parsers treat < and & characters uniquely,
therefore leading to the requirement of using < in the for loop. Also, expressions cannot be
imbedded directly inside areas of XSP Java logic without being encapsulated with
<xsl:content> tags. XSP makes coding a bit simpler than JSP, such as automatically casting
all Java types to strings.

Even with XSP, you can see how heavily Cocoon relies on XSL. XSP uses XSLT stylesheets for
source code generation. Each tag maps to an XSLT template. The template generates the
supporting program logic to implement the tag's stated purpose. It is this underlying mechanism
that makes just about any scripting language besides Java a candidate for supporting Cocoon XSP
development.

Cocoon Trade-Offs

Cocoon is an excellent option for a publishing house, such as a journal or newspaper Web site,
where the functionality of the site is defined in a structured, consistent way. Users expect these
presentations to be consistently displayed from issue to issue.

The flipside is that Cocoon is a rather large, complex system. As the Apache Cocoon site
acknowledges, its processing complexity is not well-suited for real-time operation on the server.
In order to overcome performance challenges, a great deal of effort is going into compiler
strategies and caching techniques.

The issue for Cocoon is that, like XMLC, it is butting heads with JSP. XSP versus JSP
development is probably perceived as more contentious an issue as compared to these
technologies and XMLC, which avoids the embedding of Java in HTML or XML. Cocoon must
also help XSL's formatting objects emerge as a standard. To date, whereas XSLT is enjoying a
great deal of popularity, FOs have only seen acceptance within the Cocoon project.

If the presentation results require a lot of on-the-fly processing, XMLC is the better option, always
showing the users the same view from their requests.

Note

So how was it that Lutris Consulting gained firsthand experience with JSP even before it
came up with XMLC? Well, it wasn't JSP, it was JDDI, an invention of Lutris' before JSP hit
the market. It did some things very similar to JSP, including embedding Java inside HTML
pages and supporting a macro language for conditional selection of Java code. What became
of JDDI? Well, it's still in Enhydra 3.

Final Comparative Discussion

Short of the use of simple id attributes and span tags for substring manipulation, XMLC is a
presentation technology that is completely transparent to anybody viewing a markup page about to
be processed in the XMLC environment. It achieves this by turning the page into a DOM structure,
then manipulating the structure. It is, however, more than direct DOM manipulation. As a
compiler, XMLC offers significant capabilities and conveniences that greatly simplify the tasks of
the designer, the Java developer, and the application architect. A couple of features have been
reviewed in our previous two chapters, with many more to be discussed in Chapter 6, "XMLC
Basics."

 54

Clearly, standard servlet programming, JavaServer Pages programming, XSLT programming, and
Cocoon/XSP programming have something for just about everybody. We now have sufficient
context with respect to these technologies to makes some observations about XMLC. In this
section we're going to use the context of this chapter to make some assertions about XMLC
programming, and bring to light advantages of XMLC that are made more clear when described
relative to JSP and XSLT.

XMLC Views Markup Pages as Template Object Representations

By accessing markup through the DOM API, XMLC views all markup as object-oriented
resources that can be manipulated with a minimum of markup idiosyncrasies. The DOM library
insulates the Java logic from the need to understand markup language conversion issues, such as
how to replace ampersand characters with the appropriate entity references. Letting the DOM
represent the page, there's no JSP or XSP embedded logic that looks like

if ((request!= null && (e.hasMoreElements()))...

Finally, DOM development guarantees that well-formed XML documents are generated from the
object representation.

XMLC Sticks with One Programming Language: Java

Cocoon and XSLT incorporate yet another language (or two) for project and product managers,
and sometimes their customers, to consider. Debugging becomes complex and integration issues
more difficult. With XMLC, you are operating with only one language, Java. Yes, there are the
inevitable JavaScript issues for supporting client-side browser programming, but that's the case for
all the presentation technologies discussed in this chapter. With XMLC, there is no new category
of "page programmer," an intermediate between Java developer and the page designer.

Figure 3.4 attempts to show by relative position on a triangulation of Java, DOM, and XSL
programming where the presentation technologies we've discussed might lie. Clearly, JSP is the
most Java-centric. But, without DOM support, JSP programming has had to engineer an
alternative, non-standard strategy for generating HTML/XML content.

Figure 3.4. Relative use of Java and Scripting/XSLT templating.

 55

XMLC Enables Type-Safe DOM Programming

Markup language-specific DOM sub-interfaces are incorporated with the XMLC environment.
These include HTML, WML, VoiceXML, and cHTML. Unlike JSP, which relies entirely on the
developer to construct the resultant markup page, markup language-specific libraries increase
type-safe programming. XMLC has an escape hatch for those who aren't interested in leveraging
markup-specific libraries. You always have the option to do standard DOM programming and still
take advantage of the use of id attributes. This means that you can use XMLC for any type of
markup language as long as it is based in XML.

XMLC Is a True Template Presentation Technology

With thoughtful designs on how to detect client types or preferred languages, XMLC supports the
capability for Java servlets to load the appropriate DOM representation of a markup page. This
template encapsulates the markup page, reducing the amount of Java logic required to generate the
presentation page. Unlike JSPs, these templates never contain Java code.

As a template resource and lacking any embedded logic, the page has no impact on the flow of
logic. It also eliminates the need for special tag elements representing the namespace for Java or
XSLT code.

XMLC Greatly Simplifies DOM Programming

The use of developer/designer-chosen id attributes greatly simplifies the manipulation of DOM
elements. XMLC uses the id values to auto-generate Java methods that the developer has the
option of using. These methods bypass much of the DOM intrigue of traversing, removing,
appending, and updating tree nodes and text elements.

XMLC Is Designer-Friendly

 56

With JSP, a designer must maintain two documents: One with scriptlets embedded that will,
eventually, populate a table with dynamically-gathered row data; and another that is the mock-up
page, which shows what the page might look like when the application is operational.

With XMLC, the document used by the application and as the mocked-up page are one in the
same. The XMLC compiler incorporates options that make it easy to remove mocked-up data
during compilation.

And, of course, the designer never sees a lick of code. Other than accidentally changing an id
attribute value, there's no chance to accidentally break the application. Even in the case of missing
id attributes or renamed id values, the XMLC compiler includes options for validating ids.

XMLC Eliminates the Need to Introduce New Tags (Elements)

Again, XMLC keys off of id attributes. There is no need for taglibs. There is no need for scriptlets.
The implication is that XMLC will work with any standard HTML or XML browser without
having any required update to the list of supported elements.

XMLC Is a True Loosely Coupled, Object-Oriented Presentation
Strategy

XMLC was designed to keep Web applications truly object-oriented. This was in reaction to the
observation that JSP really let HTML do the steering, as it were. The absence of Java logic
embedded in a markup page makes XMLC as loosely coupled as you can get when gluing two
very differently purposed languages together: markup and Java. XMLC's avoidance of embedding
logic in the markup makes XMLC programming more polymorphic. Any action can connect any
page. There is no pre-knowledge of page and action, which is typically the case with JSP pages.
Instead of the page calling code, the code calls the pages into memory.

With XMLC, you can string actions together to form a business process. Because XMLC doesn't
depend on a series of visual clues, you can string them together differently on, for example, a per-
user basis. An example might be the behavior defined for an average user as opposed to an
administrator. Recognizing an administrator, the logic determines that another page requiring
another type of login is to be loaded and displayed.

The XMLC Mechanism Is the Same for Everybody

Unlike JSP taglibs and XSP taglibs, XMLC introduces a standard relationship between the markup
page and how it references Java logic "underneath." Attributes, not elements/tags, are defined by
the programmer. There is no option for inserting Java logic directly in the markup page. Until
there is a unified standard JSP or XSP custom tag library, the approaches taken by different parties
to define custom tag interfaces will vary from organization to organization and product to product.

XMLC Detects Errors Early

XMLC identifies page creation errors during compile-time. Unlike JSP, XMLC detects malformed
markup pages during the development phase. It is impossible to generate a malformed markup
page when leveraging the DOM standard. XMLC development is much less error prone than JSP
development. There is less opportunity for making errors as compared to JSP development, where
the developer performs a specialized form of Java development— connecting JSP declarations,
scriptlets, and expressions. And there is a much higher likelihood of understanding the error,
because it is expressed in the context of standard Java, not JSP scriptlet-isms.

XMLC Is Built Heavily on Standards

 57

Finally, although it is not a defined technology under J2EE, in many ways XMLC is actually more
"standard" than JSP. XMLC leverages the XML and DOM standards, both defined by the World
Wide Web Consortium. XMLC is also an open source technology, which for many, offsets its
definition outside the J2EE specification.

Taglibs Do Not Make JSP Like XMLC

The most common response an XMLC developer hears in a discussion about JSP versus XMLC is
"JSP can do that with taglibs." The reality lies somewhere between an answer of "Somewhat yes,
and mostly no." For example, a designer-friendly JSP developer could create a custom tag that
enables mocked-up data to be included in the body of the element, like XMLC does natively. But
even this feature will be non-standard, as different implementers of different tag libraries do it
differently.

The leveraging of HTML/XML elements to identify and install a new custom tag again forces a
tight coupling between markup and logic. Not even XSLT defines new elements. Its elements are
standard, thus guaranteeing a common language from implementation to implementation.

My observation is simply this: If you want extreme flexibility of strategies that you use to link
markup presentation and logic, JSP is absolutely your choice. If you want to standardize on one
strategy for achieving separation of presentation and logic, and you want it to be the same
approach used by anybody else using that same technology, then XMLC is the route to take.

Templates, MVC, and XMLC

Let's be clear about one thing. XMLC was designed to deliver a pure templating strategy for Web
presentations, not an interpretation of the MVC model. Heavily leveraging the Document Object
Model standard and the intelligent use of a compiler-based strategy to simplify DOM
programming, XMLC achieves complete isolation of Java logic from the markup language. That
is what XMLC brings to the table.

This separation makes XMLC a true template mechanism. Illustrated in Figure 3.5, there is no
logic in the template, and therefore the template becomes highly portable and can be manipulated
by any number of Java objects that load it into memory. In XMLC, development the "controller"
is the servlet that identifies the nature and requirements of the client device:

• A Flash client that requires an XML stream
• An HTML browser user that indicates she expects a page in German
• An i-mode phone user with some graphics capability

Figure 3.5. Relationship of markup language and XMLC/JSP from the perspective
of the HTML/XML designer.

 58

Often in Enhydra programming methodology, presentation objects, sometimes sub-classed from
an abstract "Base Presentation Object," process a request and load, manipulate, and return the
DOM template that best suits the client and the nature of the request (for example, edit or browse).

XMLC has become an excellent strategy in a multi-device world. An application might support
taxi drivers in the field as well as dispatchers back in the office. The taxi drivers use WAP phones,
the dispatchers do not. Both, however, are required to log in.

Both users, the taxi drivers and dispatchers, access the application using the same URL. Checking
the header information of the HTTP request, the servlet determines if the device is specific to
WML or HTML. Depending on which is detected, the appropriate login screen is displayed. For
the taxi driver, the screen is very simple in order to fit onto the small handset. For the dispatcher, it
is larger, taking advantage of a standard browser's real estate to, perhaps, list the date and
company banner.

MVC for XMLC?

XMLC will eventually provide support for the MVC model. But it will do so by supporting a new
architecture, most likely in the form of colleague project Barracuda, which is being designed from
the ground up to support XMLC, and potentially JSP, with a true component-based MVC model.

 59

Summary

We've had some fun categorizing and performing high-level overviews of interesting lightweight
and heavyweight publishing frameworks, attempting to draw out some observations that might
give us some perspective on how presentation strategies can differ. Clearly, there is a distinction
between the DOM-oriented technologies and the rest.

When looking at Cocoon and XMLC, they appear to be more closely related than XMLC and JSP.
JSP Taglibs certainly represent a lot of promise (and industry activity) for delivering components
of template engine functionality, but it appears likely to become an API library that is growing out
of control. Cocoon is clearly the most comprehensive framework, addressing everything from
publishing just about anything written in XML, to setting the stage for supporting languages other
than JSP. But it is huge in its scope and capabilities, representing a daunting learning curve for
most average-sized Web application projects.

I've provided many of the reasons why XMLC is different and wonderful. Perhaps another way of
looking at it is that XMLC falls somewhere in the middle of a pure Java method to spit out content
and a pure XML/XSLT strategy that strives to keep everything neutral with regard to system
programming language, like Cocoon. XMLC is, perhaps, the best of both worlds, and definitely
suited for a sizeable audience reflecting its current popularity.

 60

Chapter 4. The ShowFloor ASP Application
IN THIS CHAPTER

• Building A Device-Independent Application
• The ShowFloor Application
• Essential UML
• Modeling the ShowFloor Application
• Summary

In the interest of getting you started with real-world Enhydra development as quickly and
effectively as possible, we're going to spend the major portion of this book defining and
constructing a real-world Web application. I will define and refine a modest description of a
ShowFloor application that can be used by a company hosting an event to assign vendors to
booths, schedule in-booth presentations, and provide kiosk displays to visitors seeking the booth
location of a specific vendor.

The development of ShowFloor will be used to illustrate the use of the Enhydra XML Compiler
(XMLC) for solving different presentation challenges, including supporting HTML form elements
and a wide variety of modern client devices. We will attempt to break out of the mold of
straightforward HTML programming and look at what it means to design an application that
leverages the best of new display devices and the technologies behind them.

This chapter is focused largely on those of you who are new to Java and perhaps object-oriented
development. If you're already a Java and UML expert, you might want to focus on those sections
addressing the requirements of the ShowFloor application.

To structure this discussion a bit, I'm going to use a little UML in this chapter, focusing on use
cases to draw out requirements. My hope is to inspire those of you who are new to Java
development to take a deeper look into UML and see if it can help you become a more organized,
effective programmer. I want to stress "a little UML" to make it clear that this chapter isn't
intended to present a comprehensive discussion of all UML modeling strategies and terminology.
The idea is to raise your curiosity to take advantage of the extensive catalog of UML books that
are dominating the bookshelves of your local bookstore.

Note

Universal Modeling Language (UML) is a specification from the Object Management Group
(OMG), home of the CORBA architecture. If you are familiar with CORBA, much of its value
lies in its language-independent design. It should then be of no surprise that UML is likewise
language independent and will serve you no matter what your preferred language.

Traditionally, modeling languages have reflected something that only university professors might
take seriously. That's not the case with UML modeling today. UML can define a software system
and scope a project in a manner that just makes practical, real-world sense.

As you read this chapter, you might start wondering whether this is a book on programming. I'll
discuss off-programming topics such as branding, the ASP model, business paradigms, and long
lifecycle application platforms. The reason for stretching the discussion a bit is to acknowledge
the new-world developer, brought on largely by the Web. The most successful programmers are
often the ones who have internalized business issues. The Internet, open source, and start-up fever
have altered the way developers used to operate, often coding applications with limited awareness
of what becomes of their software. Modern developers are now more aware of the issues, business
and otherwise, that drive application discovery, design, deployment, and adaptation.

 61

This is where UML and leveraging the UML use case meta-model comes into place. In this
chapter, you'll play the role of developer, customer, architect, and domain expert. UML will give
us the structure to systematically flesh out what we're about to build.

You might also be asking yourself why I would devote an entire chapter to defining a
demonstration application when all you want to learn about is how to use XMLC to add rows to an
HTML table template. First of all, I didn't set out to write a plain vanilla how-to book. Second,
thanks to its DOM-based approach for expressing dynamic content in a markup language, XMLC
supports a generic foundation for supporting devices of all types. The goal of this chapter is to
bring out a discussion of what it means to support different devices from the same application.
Finally, XMLC is a low-level form of presentation development. It offers a degree of flexibility
that can sometimes get you in trouble. It probably isn't a bad idea to start bringing out some best
practices when it comes to explaining and demonstrating XMLC programming.

Building a Device-Independent Application

Let's drill down into some of the options our ShowFloor application can take advantage of in
today's world of mobile phones, PDAs, voice activated devices, and, of course, computers with
Web browsers. Having concluded the device survey, we will next attack the requirements of the
ShowFloor application.

The goal with this application is to achieve the following:

1. Demonstrate how to build device-aware presentation elements of Web-based forms with
XMLC.

2. Show how to craft different tasks for appropriate devices, such as cell phones or Flash-
enabled HTML browsers.

3. Illustrate the use of Enhydra for building a three-tier Web application.
4. Convey why this application can easily be reworked for future capabilities, including

supporting new devices.

To complement your focus on the Enhydra environment for implementing the application, I will
spend some time in the remainder of the book illustrating how to accomplish these same
implementation tasks using standard servlet 2.2 programming.

Note

Enhydra supports two styles of servlet application development. First, there is Enhydra's EAF
environment for superservlet development, representing applications as a single servlet. Then
there is the standard J2SE servlet Web container, implemented from Apache's Tomcat project.
Which route you ultimately choose won't affect the path you take with XMLC presentation
development.

I've chosen to implement an application that is relevant to many who attend trade shows, such as
JavaOne or LinuxWorld. In fact, my goal is to generalize this application so that it will even be
useful for the Automated Loom Manufacturers Trade Show.

I picked this application because it is a natural for bringing out a multi-device strategy that can be
addressed by XMLC's capability to support a wide range of devices, such as those shown in
Figure 4.1, and the markup languages that support them. Before I describe the application, let's
review some fundamental topics that require discussion to set the stage.

Figure 4.1. The possibilities of devices.

 62

Consider the Possibilities

Let's examine some of the more intriguing features of client side devices that our application
design may take into consideration. Each device or device technology offers something that might
be perceived as enhanced value to the ShowFloor customer. Here is a quick overview of the
features you can look forward to tackling with Enhydra and Enhydra XMLC:

• A Flash 5 client for rendering the layout of a ShowFloor map view of vendor booths and
aisles to see the path to get to a specific booth

• A cell phone user interface for looking up a vendor's booth number
• A non-Web phone that rings 10 minutes before vendor presentation is about to start, using

a soothing voice to tell you to get on your way
• Detecting which device is accessing the application and displaying only those capabilities

that make sense to the particular device
• An Admin interface that adapts its look and feel to reflect the event's host

As client-side devices of all types join the Web, our options for delivering specialized services and
functionality increase on almost a monthly, per device basis. By coming up with a plausible
strategy for building a service, give some thought to how the ShowFloor application might take
advantage of the unique attributes of traditional and emerging devices.

Compelling, Meaningful Roles for the Right Device

Today's phones are characterized by their mobility, screen size, voice orientation, and small
bandwidth for processing a modest amount of data. With the accent on reasonable expectations,
phones give the user the ability to indicate simple things such as yes or no, enter a few numbers,
or acknowledge what's displayed on the screen. You wouldn't use your Nokia 7110 for intensive
data entry. But perhaps you want the ShowFloor application to inform a show attendee when a
booth presentation is about to begin. Or do a quick look up of a vendor's booth location. And
because VoiceXML is so easy to access these days with the emergence of Voice portals, such as
Voxeo and BeVocal, why not autogenerate calls announcing that a booth show is about to start?

Voice Portals

How do you get from a phone to your application when "voice" is the application presentation?
And how do you do it without buying expensive voice recognition hardware? Voice portals such
as Voxeo (www.voxeo.com) don't care if you're calling from a high-end Nokia cell phone, a
phone booth, or a low tech rotary phone at Aunt Carolyn's house. They provide the connection
technology that links voice recognition with a URL that is assigned to your application.

Unless you want to build the entire infrastructure yourself, voice portal services provide the link
between John Doe on the phone and an application using the VoiceXML standard. Popularized by

http://www.voxeo.com/

 63

the TellMe service (www.tellme.com), voice portals are an excellent example of how to get a lot
out of existing, old world technology.

Smart Devices

J2ME and Flash turn mobile devices such as phones and PDAs into smart clients that go beyond
browser-based mobile computing. They are able to keep persistent information between
intermittent connections with backend application servers. They also make it easier for designers
to define a user interface that can adapt to its local client display. It's still early in their
development and introduction; however, smart devices appear to be gaining a foothold in the
market for enhanced gaming as well as the enterprise market, where employees in the field access
and download back-office data such as customer information or part numbers.

Phone Browser Devices

Browsers are still key to connecting PC, Mac ,and Linux users to the Internet. Their role has also
been extended to WAP and i-mode phones that, depending on the underlying carrier service,
support the XML languages of WML, XHTML, and compact HTML. Browsers on phones apply
to people on the move who don't have a lot of time to do typing, such as bike messengers or taxi
drivers. The use of browsers simply relates to the size of the screen and the size of the keyboard.

Although support for XHTML, a true XML language, is on the way, HTML is still the dominant
browser language. PC style browsers are still ideal when it comes to forms-based data entry such
as an administrator might use.

XML, the Common Device Language

A common thread runs through all the languages supported by these devices: It's XML.
Traditionally, in a rapidly developing market, we're saddled with lots of incompatible protocols
and languages, waiting to see which one becomes the de facto standard, reminiscent of the 1980's
"VHS versus Beta" battle to be the standard format for the emerging VCR market.

Perhaps by riding the coat tails of the success of the Internet as the new backbone of network
computing, XML has defined a new baseline for expressing and carrying information. With
HTML as a special case, it would be suicide for any vendor to propose or leverage a language
based on anything else.

Even Flash Speaks XML

Just when you thought Flash had settled into its very successful niche as a compelling
client technology for animations and graphics, Macromedia came up with one leap
better. In 2000, Macromedia rolled out Flash 5 with an embedded XML parser for
handling asynchronous XML communications. The simple, but powerful result is that
Flash 5 has emerged a powerful client-side device that might give WAP and i-mode
devices a run for their money.

This is where the relevancy of the XMLC architecture enters. By viewing the world as speaking
the common language of XML, XMLC is prepared for just about any new language that leverages
XML.

The ShowFloor Application

http://www.tellme.com/

 64

My fictitious ASP, Otter Productions, is in the business of providing convention show services for
large events. One of the many services Otter offers is called ShowFloor. The ShowFloor service is
targeted at corporations that want to host a show or conference. The ShowFloor services give
these customers the ability to administer the creation, assignment, and presentation of the vendor
booths that occupy the show floor without having to build their own infrastructure for doing so.

The ShowFloor service will provide many features for the perspectives of

• The event host
• The vendor participating in the event
• The visitor attending the event

Some of the features will include

• Creating a layout of show-floor booths
• Assigning a vendor to one or more booths
• Displaying the show-floor layout in a kiosk
• Notifying visitors of a pending in-booth presentation

From the perspective of Otter Productions, the paying customer is an Intel, an Apple, or a Martha
Stewart Enterprise. The customer will want to brand the ShowFloor application and all of its
interfaces. In other words, the ShowFloor service will make it appear as though the application
was created solely for Intel, Apple, or Martha Stewart. Giving the ASP the capability to support
rebranding of the ShowFloor application without requiring massive rework will be one of the
challenges to our application design.

Brand

A brand is typically a visual clue that tells you you're approaching a Coke bottle long
before you can actually read the words. If somebody mentions the word Coke, you know
it's a soft drink. That's a very important thing to keep, preserve, and perpetuate for any
business. The notion of brand is somewhere in the same category of goodwill. It's
almost a gut-level experience that a company is looking to establish with the public.
That's brand recognition. Companies put a lot of money into advertising campaigns
such as "Intel Inside," in order to create brand and brand awareness. After awhile, the
idea is that, in the view of the consumer, the brand will precede what the company
actually does. This is why supporting the capability to incorporate the customer's brand
will be important to the ShowFloor application.

Finally, Otter Productions can also make interesting marketing information available to
subscribing vendors and event hosts by tracking some of the activities of the visitors. Statistics can
include which vendor's booth was sought out the most, or information about the visitors
themselves. Otter can even generate information about which devices were the most commonly
used by show participants.

Note

The idea behind ShowFloor business mode is nothing new. Internet Exposure
(www.iexposure.com) has implemented a similar application using Enhydra for its customer
Cygnus Expositions. It clearly goes well beyond what we're building in this book, hosting
sites such as Strictly eBusiness (www.strictlyebusiness) and homeandgarden.com.

As with any thoroughly written product requirements document, I'll make it clear what we won't
address with ShowFloor. We're not going to address the conference sessions portion of the show,

http://www.iexposure.com/
http://www.strictlyebusiness/
http://homeandgarden.com/

 65

such as scheduling talks or BOF sessions. We're also not going to find visitors a hotel. All of this
is left as an exercise for you.

Supporting an ASP Business Model

Even those of us who reside in open source land still have to find a way to collect a paycheck to
pay for DSL or that Linux server hosting my family Web site in the garage. That paycheck comes
from somebody turning a business model into a steady flow of revenue that keeps the lights turned
on. If you think Apache runs on goodwill, well, in a way it does. But that goodwill comes largely
from IBM, which has a vested interest in the success of Apache, and therefore justifies the
donation of person power to help lead the Apache.org effort. IBM and other large corporations'
interest in Apache benefits us all.

A fundamental consideration when beginning the design of a business application is to take into
full account the business model behind the application. Its design and functionality must set a path
for a lifetime of evolution through extensions, maintenance, and redesign. Its lifecycle must
require a quantifiable and justifiable investment of time and money in order to serve as a
foundation for an evolving business model. In most cases, the goal is to set the stage for an
application that can evolve in functionality without major rework.

The business model behind the ShowFloor application incorporates an ASP strategy whereby we
lease our application to typically large customers, such as Intel, Sun, Martha Stewart, and the
Society of Herpetology. Application Server Provider (ASP) is a relatively new business notion
that has been made popular by the emergence of the Web. It makes sense to lease remotely hosted
applications that address the intermittent needs of companies that have no desire to support a full-
time infrastructure with dedicated staff.

There are many examples of other types of ASP business models. For instance, a large bank might
support an ASP line-of-business by making a suite of online financial services available for lease
by smaller member institutions. A feature of the application might be that it can be re-branded by
the company subscribing to the ASP service. To the end user, it appears to us that we're using, for
example, the Santa Cruz Credit Union Financial Planner Web service, even though it's actually
hosted by an ASP back in Omaha, Nebraska.

Essential UML

As they say in UML land, let's keep the ceremony to a minimum, and get to the problem at hand.
In the world of OO design and development, it's all about up front thinking and setting the stage
for iteration, prototyping, and refinement. Object-oriented programming existed a long time before
it finally took hold in the business world. Its adoption was slowed by the reluctance of many
software project managers who were reticent to embrace a process that delayed actual coding for
so long. But the payoff for a well thought-out object-oriented architecture has finally begun to sell
itself. For many, Java and its strong ties to the Internet finally delivered OOP to the enterprise.

UML is a modeling language. It defines meta-models, such as use cases, class diagrams, and
sequence diagrams to describe larger model elements that represent your software application, the
components it contains, and how they interact internally and externally with the actors of the
system (for example, administrators, vendors).

Although UML is technically a modeling language that can be applied to any development process,
there is a general description of the process influenced by UML as you read the many UML books
from Fowler and friends.

http://apache.org/

 66

The typical UML-leveraged project describes the development cycle as an iterative process of
continuous refinement, leading the eventual creation of a software product.

The Cycle Begins

Inception, elaboration, construction, and transition are the phases of the development process.
Inception deals with bootstrapping the project by focusing on the user's requirements, bank roll,
and goals. What is the big picture and the end game? Who's the customer's customer? Is this a one
off, feasibility application, or one that sets the stage for the long haul?

Elaboration focuses on organizing the observations and early requirements into meta-models of
charts and diagrams of how, for instance, classes send messages to other classes and the sequence
they observe. During elaboration, the goal is to identify all the potential use cases that exist. Apply
class and sequence diagrams. Then rework use cases as needed. Start prototyping as soon as you
can, and start to fill out the description of the model.

After you've done that, you're on your way to quantifying the scope of the project. You now have
enough detail to analyze risk and present tradeoffs to the customer. And, of course, go back to
your customer, Otter Productions, to validate that the scope and subsequent project management
appraisal of implementing to the scope are acceptable.

During construction, you're generating code and discovering that—through application and the
unit testing of individual components— for example, more thought needs to be put into the use
cases. Construction involves iteration, constantly refining your working model through
prototyping and component development leading to full integration and system test.

Finally, transition addresses beta testing and performance tuning because your application has
thickened into a feature-complete status.

Getting Started with Use Cases

We're out to define the domain model that describes all meaningful aspects of the ShowFloor
application. The domain model accounts for

• the world of the convention show floor;
• the ASP model, including billing and branding, as applied to the show-floor industry;
• the participants in the show floor world, namely visitors, vendors in booths;
• and the Otter Productions customers who host these events.

These are the elements of the ShowFloor domain model that we can begin to flesh out with an
initial list scrawled on a white board. The use case diagram is a UML meta-model that helps us
work with the domain expert, namely, Otter Productions, as well as our design and development
team members, to capture elements of the domain model (see Figure 4.2). And don't forget the
folks who will eventually have to deploy the application, especially one that is supposed to
simultaneously support multiple event hosts without fail.

Figure 4.2. Actors of the administration system.

 67

Use cases capture the identified roles (actors) and how they interact with the system. A use case
consists of one or more scenarios to bring out the most useful workflow, including the branches
that occur when, for example, pilot error occurs. Use cases are a collection of scenarios that
address a particular task, such as add a vendor to the event. Honesty is the best policy when
describing your software in the real world. I love starting a project with use cases exercises. It
immediately raises more questions with intriguing implications for the customer to consider.

UML defines actors as parties (that is, organizations and individuals), places, or things that carry
out use cases. Actors can be other systems, such as an accounting system (for billing our event
hosts, or reservation systems for setting up event visitors in hotels). Also, think about external
events that trigger interactions between actors and the system. For example, what should happen
the week before an event? The day before an event? Identifying actors helps to start our task of
fleshing out a first pass at some use cases.

Note

Sitting in a room with key participants (that is, stakeholders and domain experts) to build use
cases with multiple scenarios can be a lot of fun. It's kind of like charades. But, if you're itchy
to type like I am, moving quickly to prototyping can help flesh out some scenarios that didn't
appear on the white board. It's the prototyping that sets the iterative process into motion.

All this activity is what Fowler describes as the elaboration phase. It's kind of like growing
something from a few seeds, making sure that they reflect the business model.

Modeling the ShowFloor Application

Let's transition from talking about everything we could do to what we want to do. Picture a bunch
of folks in a room, simply walking through elements of the proposed ShowFloor application. We'll
organize our thoughts, identifying likely candidates for the domain's actors, their activities and

 68

attributes. From this collection of notes, we can begin the definition of use cases. I've italicized
actors and objects where they are first identified:

Event— The event has a date or range of dates, a city location, a venue (for example, San
Francisco's Moscone Center or New York's Jacob Javitts Convention Center) and an EventHost.
The Event has categories of Vendors, such as consultants, hardware, groomers, and dog walker
services. The event is initialized by OtterAdmin.

EventHost— The EventHost is the Otter Production's primary customer. As a satisfied customer,
the EventHost might host more than one event, such as JavaKennel in New York and JavaKennel
in London, using the same ShowFloor application. Otter Productions supports an OtterAdmin to
provide the highest level of administration over Event, EventHost and EventHostAdmin, such as
creating the new account and associated event or events. The EventHostAdmin adds details about
the Event, including travel directions, vendors and booth assignments.

Vendor— A Vendor is a company that has secured one or more booths at an event. Each Vendor
has one or more products or services to sell. A Vendor might optionally schedule in-booth
presentations throughout the day or days of the event. A Vendor can fall into different categories
that are defined by the EventHost. Categories will vary from show to show, depending on the
industry. Categories will give the show Visitor the ability to say, "Show me all the application
server vendors here." Vendors are administered by the EventHostAdmin.

Sponsor— Just about every event features something like a gold, silver, or bronze Sponsor. These
are Vendors who have paid an EventHost-determined sum of money in order to help sponsor the
event and get preferred treatment as a result—perhaps in terms of booth real estate, prominent
positioning, or prominent banners hung from the ceiling. Sponsors and Sponsor categories are
created by EventHostAdmin.

Visitor— You and I are the Visitors who go to the event and want to look up booth information
using our browser from work, or from the Flash-powered kiosk while we're at the show. A Visitor
might already be in the ShowFloor visitor database, having registered for another show that was
also hosted by a customer of Otter Productions. This provides an excellent addition to our ASP's
business model where marketing metrics can be sold to potential customers (that is, event hosts).
But, for this demo, we'll treat the Visitor as volatile data that goes away when the event is over.

Booth— A Booth is a geometric area of the ShowFloor that can be an occupied booth, an
unoccupied booth, or an area of walking aisle. It will have a number and a dimension. As an
occupied booth, it is associated with a vendor and, possibly, a BoothShow. A Booth can be
reduced to a grid element, where it represents a booth, an area of floor space, a restroom, an
entrance, an emergency exit, or an obstacle, such as a column holding up the show floor's ceiling.
Booths are assigned by the EventHostAdmin, and they are organized according to the
ShowFloorMap.

BoothShow— Each vendor has the option of providing regular or irregularly scheduled in-booth
presentations. Presentations have a start time and a title. Individual visitors can register for a
presentation. Presentations are managed in the system by the VendorAdmin.

We have probably made a reasonable first pass of identifying the ShowFloor actors and some of
the potential entity classes, described next, of the ShowFloor model. Table 4.1 attempts to
summarize them by category.

Note that there are some likely candidates representing features that will never see the light of day,
such as tracking every visitor who has ever enrolled through the ShowFloor application. We'll
treat it as volatile data so that issues around backing up data and reconciling duplicate entries don't
raise the overhead of maintenance costs.

 69

Table 4.1. ShowFloor Actors and Nouns
Party/People Thing/Place [Nouns]
EventHost EventHostAccount
EventHostAdmin SponsorType
Person VendorAccount
Sponsor Event
Vendor Booth
VendorAdmin BoothShow
Visitor ShowFloorMap

A Use Case

UML tells us that use cases can be used to identify actors. Actors are anybody or thing outside the
system that uses the system. Let's apply a use case template to the activity we'll call Create
EventHost:

Description— Create EventHost. This initializes the EventHost (that is, the customer) and the
EventHostAdmin. The EventHostAdmin now has the ability to create the event.

Preconditions— The Otter sales person must have closed the deal (that is, signed the contract)
with the EventHost. The EventHost's account must have been created in the account system.

Deployment constraints— We need access to the accounting system in order to validate the
EventHost's account.

Normal flow of events— The Otter Administrator, OtterAdmin, gets a call from the sales person
that he has just sold an event to a company. The OtterAdmin initializes the EventHost into the
Event system. Secondary chores include creating the EventHostAdmin and adding contact
information.

Alternate flow of events— None identified at this time.

Exception flow of events— If OtterAdmin cannot find that EventHost is already in the system,
refer back to the Otter sales person.

Activity diagram— TBD.

Open issues— None so far.

Note that we could have done a number of things differently. For example, we could have required
that Otter Productions create the Event itself. Instead, we chose to let the EventHost do that.

Summarizing Interactions

With the first set of actors identified, I will write a paragraph about each interaction between the
actor and the system, which UML calls a specification:

Create EventHost— The Otter Production's OtterAdmin creates a new EventHost.

Create event— The EventHostAdmin initializes a show or Event. The Event at this point is just a
placeholder for meaningful information to be added.

 70

Edit Event— The EventHostAdmin takes the newly-created Event and adds key content, including
the Event's name, location, directions, and floor layout. The EventHostAdmin also sets the
beginning visitor badge number and creates categories for vendors and sponsorships.

Create Vendor— The EventHostAdmin initializes a Vendor. Vendor information includes name,
address, list of categories (for example, ISV, VAR, OEM), Booth assignment, contact person and
his information.

Add Vendor— EventHostAdmin enters info representing the deal made with the vendor. The
Vendor name and address are added. Account information is added. One or more booth
assignments are made in response to the terms of the vendor's request for booth footage. Will the
Vendor need an Internet drop? Will he require one or more of the show-supplied flat screen
displays? Vendor will be categorized. This is probably two tasks: create a Vendor account, then
add the Vendor to the Event.

Edit Vendor— Vendor adds info beyond general account info. This might include the general
Booth description, company information including address, products and services. The Vendor
might also add his in-booth presentation topic(s) and times.

Create Booth— The EventHostAdmin initializes a Booth from one or more objects on a
ShowFloorMap. A Booth can be a booth, aisle, pillar, men's room, women's room, dining area,
and so on.

Create Visitor— Initialization establishes the Event's name, location, directions, and floor layout.
The visitor adds himself to the system. Visitor enters name, address, title, and any promotional
codes. Visitor might also fill out an online survey.

View ShowFloor— Anybody can view the ShowFloorMap whether they're at a kiosk or at their
desk. It's available to anybody. The viewer can identify booth locations by selecting vendors from
a drop-down list. Clicking on the booth will bring up vendor information including products and
in-booth presentation times. Individuals can register to be notified regarding specific presentation
times.

Create Presentation— The VendorAdmin initializes a series of BoothShows, including titles and
times.

Given this white board list of data points from discussions with the customer, Figure 4.3 expands
the ShowFloor Administration System from Figure 4.2.

Figure 4.3. Expanded version of actors of the Showfloor administration system.

 71

Identifying Objects: Entity, Boundary, Control, Lifecycle

Let's assume that we have developed a relatively comprehensive set of use cases from which to
continue building the model. It's time to discover the objects that we can use to begin building
UML sequence diagrams. Sequence diagrams will help us illustrate the interactions between the
objects of a use case.

Boundary objects represent the interface between the actor and the system. A specific example is
the user interface. Well designed boundary objects know nothing about the business rules and data.
Their role is to get input from the actor and present results. This is the fingerprint of the beginning
of a well-designed three-tier application.

Entity objects, on the other hand, contain the business data and business logic of the system. Entity
objects are identified by extracting important sounding nouns and behaviors from the use case. For
example, "log in the administrator" is a significant behavior. A Booth is a significant noun. The
Vendor's account represents significant data.

Control objects are the traffic cops within the use case. They address workflow and provide
services to other objects. Control objects are key to minimizing the complexity of both boundary
and entity objects. The ideal entity object can serve many boundary objects. The control object
handles the complexity of interacting with one or more entity objects that might otherwise make
the boundary object more complex than it needs to be.

Note

In day-to-day life, we deal with control objects all the time. The guy behind the counter who
takes our order for an espresso relieves us of having to figure out the financial transaction, the
technique (and learned experience) of making the espresso, and, most importantly, the
coordination of the washing of the used cup. Our life, at the boundary, is made much simpler.

 72

Finally, object lifecycle classes are things that keep track of all the entity objects. For example, the
individual booth entities must be tracked, sorted, added, and removed. The term object lifecycle
classes is a reference coined by CT Arrington in his book Enterprise Java with UML (Wiley/OMG
Press).

From Use Case Scenario to Sequence Diagram

Let's take another use case and postulate the model through a UML sequence diagram. The end
result will be a more detailed use case scenario that gives us the ability to flesh out the interactions
between the actor and identified objects (see Figure 4.4):

Description— Assign Vendor Booth. The EventHostAdmin has logged into the system to allocate
one or more booths for a Vendor. Selecting from a list of authorized Vendors, the
EventHostAdmin reads notations and the Vendor's sponsorship level in order to determine a booth
assignment.

Preconditions— The EventHostAdmin has successfully logged in and has been authorized to
perform this task. The Vendor has been previously added at the request of the EventHost's sales
organization to the Otter accounting system.

Deployment constraints— TBD.

Normal flow of events— The EventHost successfully assigns one or more Booths.

Alternate flow of events— TBD.

Exception flow of events— If the Vendor does not appear in the system, the EventHostAdmin
must manually address the situation.

Figure 4.4. The sequence diagram for an Assign Vendor Booth use case.

One of the implications of this use case is that the Vendor is sold floor space, but not a specific
Booth assignment.

Let's follow the sequence diagram. The EventHostAdmin, our actor, uses the user interface to
select from a Vendor list. This ensures that only Vendors who have been sold floor space can be
selected from. The controller is responsible for satisfying all the user interface interactions. A map
of the ShowFloor is retrieved to display the available Booth space. Once assigned, a new Booth

 73

object is allocated for deferred processing by, perhaps, the Vendor. Finally, the system displays
the confirmation that the booth number has indeed been assigned.

Device-Driven Tasks

We've leveraged enough UML to start thinking about the requirements and scope of this
application. It's time to throw something new into the mix, which is determining our views based
on who is accessing the application using what sort of device. These notions apply directly to the
boundary objects, representing a two-way street of user presentation tempered by the limitations
of the selected device. Table 4.3 suggests possible per-device tasks to be supported by the
ShowFloor application.

Table 4.3. Matching Roles and Tasks with Devices
Role Task Device
Admin Create an instance of a Vendor company. Browser
Visitor Locate a Booth #. WAP

Phone
Visitor Call me when the presentation is five minutes from start. J2ME

Phone
Visitor Participate in a Vendor-rating promotion for best in-booth presentation

and most obnoxious BoothShow.
WAP
Phone

Visitor Select a company to identify Booth. Flash
Visitor Click on a Booth for details. Flash
Admin On-the-floor EventHostAdmin uses J2ME phone for immediate access

to critical information for last minute changes, such as fixing the IP
associated with a vendor.

J2ME
Phone

Admin Create a ShowFloor. Browser
Vendor Schedule BoothShows. Browser

Note that WAP phone could easily be replaced by i-mode phone, depending on which area of the
world we're talking about.

The task that uses the J2ME phone is particularly interesting. The admin can access the same
EventHostAdmin page that they would normally access from their PC browser. The application
will see that the device is a J2ME phone and put the EventHostAdmin into on-floor mode,
presenting only the info that makes sense for being on-the-move with a smart phone.

Summary

We have performed a reasonable first pass within the elaboration phase of fleshing out a few of
the requirements for the ShowFloor application for our fictitious ASP, Otter Productions.

We used a sub-set of UML features to introduce some of the useful tools of UML modeling for
developing customer requirements, including the actors and operations that our application will
require. We've also included our own speculation about how the customer could take advantage of
the growing availability of mobile devices to create attractive new features, such as vendor rating
systems and in-booth presentation notifications, to make the event more enjoyable for visitors.

 74

Chapter 5. Enhydra, Java/XML Application Server
IN THIS CHAPTER

• Enhydra and J2EE
• Enhydra Application Framework Genesis
• The Package Tour
• Development, Runtime, and Deployment
• Building and Running ShowFloor
• Enhydra Multiserver
• Configuration Files
• Administration Console
• Enhydra Director
• The Enhydra Application Framework
• Enhydra Services and the EAF Runtime
• Enhydra DODS
• Debugging an Enhydra Application
• Deploying Enhydra Applications
• Summary

This is the grand tour of the technology platform that originally inspired Enhydra XMLC. XMLC
addresses the presentation tier of a Web application. We'll leverage the Enhydra application server
to address not only the business and data tiers, but other deployment and development issues as
well. We'll introduce the topics of database and session managers, as well as how you connect an
application server to the outside world.

After briefly introducing key Enhydra components, we'll take a few pages to walk through the
exercise of creating an Enhydra "stub application." This experience will bring out key discussion
and conceptual topics that we'll expand upon in the remainder of the chapter. We'll wrap up our
discussion with how to use the Enhydra DODS to create a mapping of data logic to a SQL
database table, and how to deploy the ShowFloor application with the Enhydra Administration
Console.

Note

All the examples within this chapter and the rest of the book were created using open source
Enhydra 3.1b1, running inside a Cygwin UNIX emulation environment on a Windows 2000
desktop.

This chapter is just the first wave of explaining Enhydra application development. We'll continue
to expand the discussion as we use XMLC and other Enhydra technologies to fill out the
ShowFloor application.

If you are new to Java, perhaps coming from the worlds of CGI/Perl or Visual Basic programming,
the rest of this book will leverage Enhydra 3.1 to introduce you to servlet development in a step-
by-step fashion as we systematically roll out Enhydra and the ShowFloor application.

Note

Just getting started with Java? Enhydra is a great way to get going. Why? Because it builds a
working stub application that you can incrementally add logic to as you discover the
capabilities of Java. Enhydra also encourages a good three-tier application design philosophy.

 75

Enhydra and J2EE

The name of the game in the Java world today is "standards." The concern for most of us is "Am I
learning about something that is proprietary- or standards-based?" In a short four years, we've
come from a roll-your-own approach to application server design to the highly structured and
standardized Sun J2EE blueprints for Enterprise Java Beans computing. Judging by the success of
J2EE platforms such as BEA's WebLogic, JBoss, and Lutris' EAS, the development community is
happy to embrace implementations built on the J2EE standard.

With standards in mind, there are two application servers included on the CD with this book: the
lightweight open source Java servlet application server Enhydra 3.1, and Lutris EAS 4. Lutris
EAS 4 is a full implementation of a J2EE application server. You can develop XMLC applications
on the lightweight Enhydra, then easily migrate them to Lutris EAS with a few simple file
transfers. Thanks to the standard servlet API, you can migrate the applications you develop with
Enhydra to any J2EE or servlet-compliant Java application server, including IBM's WebSphere or
BEA's WebLogic. If you are comfortable with the J2EE environment, you can implement
everything directly on Lutris EAS 4. The choice is yours. Even if you just want to use Lutris EAS
4 as a deployment platform, you can create the ShowFloor application as an Enhydra 3 application,
then install the generated enhydra.jar file in the CLASSPATH of a J2EE environment and run
the application from there.

Note

Enhydra 3.1b1 is the version of Enhydra that you can download from enhydra.enhydra.org.
We'll refer to it in this book as "Enhydra 3." Enhydra 4 references refer to the open source
elements of Lutris EAS 4.

Enhydra XMLC and J2EE

Enhydra XMLC has been designed for the Java Servlet environment. Anyone can download
XMLC from its open source home at xmlc.enhydra.org and build application presentations for any
standard Java servlet environment, from Apache Tomcat to BEA WebLogic.

Enhydra XMLC is not a part of the J2EE specification. But nor is Cocoon, XSP, or XSLT.
Enhydra XMLC is, however, an open source technology. Most of the J2EE services are not.

Standards compliance is clearly a key attribute to any technology discussion. But there is
something equally compelling to say about de facto standards, as powered by open source
licensing. In addition to helping to promote API specifications, open source has also delivered
many de facto standards in lieu of official specifications. As we mentioned in Chapter 3,
"Presentation Technologies," XMLC is also based on more standards than JSP by virtue of support
of the w3C's XML and DOM specifications, as well as Java itself.

Enhydra Application Framework Genesis

Prior to becoming an open source project, the Enhydra development and runtime environment was
developed by Internet development consultants as a platform for achieving rapid development of
Web applications for a wide variety of customer requirements.

http://enhydra.enhydra.org/
http://xmlc.enhydra.org/

 76

As a 100% servlet implementation, Enhydra's architecture and feature set anticipated the eventual
introduction of Sun's servlet 2.2 APIs. The original developers of Enhydra were UNIX networking
experts who were happy performing application development with Unix text editors vi and Emacs.
Starting from the flexibility of the UNIX command line and a well-organized source tree and
Make file system, they evolved Enhydra functionality as they identified common requirements
from a growing cross-section of customers.

Early versions of Enhydra introduced the underpinnings of a well-thought out three-tier source
hierarchy and a system of Make files for building and deploying an Enhydra application. Starting
with session services for abstracting the use of cookies and eventually URL re-writing, Lutris
added additional services, including the management of the connection with the database using
early third party JDBC drivers.

Configuration files were added to help running applications minimize the impact of changing
environmental requirements, ranging from swapping SQL databases to setting the timeout for
login sessions.

Over time, as more customer experience was gained in the early days of Internet consulting,
Enhydra evolved into a highly integrated set of framework and common services for supporting a
wide swatch of Web application requirements. Most importantly, it made possible Web
application architectures that were easy to maintain and evolve over time.

Despite the integrated nature of Enhydra, it became an extremely flexible environment, enabling
developers to replace one service implementation with another. Use of interface definitions at the
service levels makes this possible.

Note

As you'll discover, the Enhydra application is one big servlet. The result of this is that you can
execute Enhydra applications in any servlet running environment, such as Allaire's Jrun or
New Atlanta's ServletExec.

In keeping with the desire to simplify Web application development as much as possible, the
Enhydra architecture introduced the notion of a superservlet model. This model implements Web
applications as a single servlet; the organization of three-tier architectures is achieved at the class
and source code level within the servlet. The end result was that Enhydra applications were much
easier to implement, as opposed to those built through traditional servlet chaining.

The sum total of these manager services and the superservlet model is the Enhydra Application
Framework, or EAF. Additional tools including the management console and the data object
generation tool, Enhydra DODS, were added around the time that Enhydra was introduced as an
open source project on January 15, 1999.

It was not long afterwards that Enhydra XMLC and support for the standard J2EE "Web
Container" via incorporation of servlet 2.2/JSP 1.1 were added.

Using EAF for the ShowFloor Demo

The Enhydra Application Framework (EAF) will be the platform for the development of our
ShowFloor application. EAF is a specialized form of Java servlet programming that precludes the
need for chaining servlets together to develop a fully functioning three-tier application.

Because we're focusing on presentation development with Enhydra XMLC, it matters little which
application server platform we use "underneath," as long as it supports servlet programming. EAF
is ideal for our needs because it greatly simplifies the construction of a Web application from

 77

presentation layer through to the database. EAF is an ideal environment for rapid prototyping of
applications that can easily be migrated to lightweight standard servlet environments, or with a
little more work, J2EE platforms.

For a pure servlet 2.2 implementation of ShowFloor, we will revisit some of the implementation
details in Chapter 7, "The xmlc Command," and elsewhere in the book. As you will see, there is
very little impact to overall implementation details of ShowFloor in either EAF or servlet 2.2
environments.

The Package Tour

One of Java's improvements over C and C++ programming is its natively enforced hierarchical
naming convention for referencing other Java class libraries. The result is that you can interpret a
lot about an application by simply examining the names of imported packages and classes. This is
particularly true when many of the incorporated packages represent well-known open source
efforts. Before we dive into Enhydra 3 development and deployment, let's take a look at a few
collections of these packages.

Tables 5.1 and 5.2 represent the core personality that distinguishes much of Enhydra from other
application servers. The com.lutris package addresses Enhydra's support for login, HTTP
processing, presentation manager, SQL database connectivity, and data object to relational
database mapping, as well as a number of utilities for updating log files and applying filters to
HTTP requests. The classloader package serves Enhydra's unique EAF implementation for
launching and partitioning Web applications. We'll talk about the classloader later in this
chapter.

Table 5.1. The com.lutris Package
com.lutris.applet
com.lutris.appserver.server
com.lutris.appserver.server.httpPresentation
com.lutris.appserver.server.jolt.joltpo
com.lutris.appserver.server.session
com.lutris.appserver.server.sql
com.lutris.appserver.server.sql.informix
com.lutris.appserver.server.sql.msql
com.lutris.appserver.server.sql.oracle
com.lutris.appserver.server.sql.standard
com.lutris.appserver.server.sql.sybase
com.lutris.appserver.server.user
com.lutris.classloader
com.lutris.dods.builder.generator.dataobject
com.lutris.dods.builder.generator.query
com.lutris.html
com.lutris.http
com.lutris.logging
com.lutris.mime
com.lutris.util

 78

Too much should not be read into the naming conventions com.lutris and org.enhydra.
There is no "pure" division of what is "owned" by Lutris and what is "owned" by Enhydra.org.
Most of the naming conventions can be attributed to "historical reasons." Both sets of packages
and classes fall under the Enhydra Public License, with some exceptions, such as the VoiceXML,
Compact HTML, and the XHTML DOM package.

Table 5.2. The org.enhydra Package
org.enhydra.wireless.chtml
org.enhydra.wireless.chtml.dom
org.enhydra.wireless.voicexml
org.enhydra.wireless.voicexml.dom
org.enhydra.wireless.wml
org.enhydra.wireless.wml.dom
org.enhydra.xml.dom
org.enhydra.xml.io
org.enhydra.xml.lazydom
org.enhydra.xml.xhtml
org.enhydra.xml.xhtml.dom
org.enhydra.xml.xmlc
org.enhydra.xml.xmlc.dom
org.enhydra.xml.xmlc.html
org.enhydra.xml.xmlc.reloading
org.enhydra.xml.xmlc.servlet

Enhydra 3 also supports standard "Web Container" servlet 2.2/JSP 1.1 programming. This is
captured in the Apache Tomcat project's javax package, an implementation of the servlet 2.2
API illustrated in Table 5.3. As you can see from the table, Enhydra supports JSP and its taglib
capabilities for those who choose to port their existing Web applications to Enhydra or simply
prefer JSP over XMLC development.

Table 5.3. The javax Package
Javax.servlet
Javax.servlet.http
Javax.servlet.jsp
Javax.servlet.jsp.tagext
Javax.xml.parsers

Enhydra leverages Xpath and the Apache project's Xerces for the XMLC compiler. Xerces is used
to parse all markup pages that are non-HTML, such as WML and VoiceXML. From the list in
Table 5.4, you also see that Enhydra supports XSLT development with regard to the Apache
Xalan package.

Table 5.4. The org.apache Package
org.apache.xalan.xpath
org.apache.xalan.xpath.dtm
org.apache.xalan.xpath.res
org.apache.xalan.xpath.xdom
org.apache.xalan.xpath.xml
org.apache.xalan.xslt
org.apache.xalan.xslt.client

http://enhydra.org/

 79

org.apache.xalan.xslt.extensions
org.apache.xalan.xslt.res
org.apache.xalan.xslt.trace
org.apache.xerces.framework
org.apache.xerces.parsers
org.apache.xml.serialize

Full DOM support is included in Enhydra. Table 5.5 reflects XMLC's basis in W3C standards,
listing the packages required for DOM Level I and Level II support. The W3C's Java
implementation of HTML Tidy is used by the xmlc command for processing HTML, bad form
and all, to construct the output HTML DOM class. Enhydra supports SAX development when an
alternative to the DOM's tree view of XML data is required.

Table 5.5. The org.w3c Package
org.w3c.tidy
org.w3c.dom
org.w3c.dom.events
org.w3c.dom.html
org.w3c.dom.range
org.w3c.dom.traversal
org.xml.sax
org.xml.sax.ext
org.xml.sax.helpers

One last package not listed is gnu.regexp, which is also supported by Enhydra 3. This regular
expressions package is used by XMLC's command line parser, but can be very useful when strong
pattern matching is needed.

Note

The online JavaDoc-generated documentation that accompanies Enhydra 3 has been adjusted
to list only those packages and their classes that are user documentation only. This is reflected
in the package listing discussed in this section. The Enhydra documentation philosophy is to
show only those APIs that would be used by a developer to develop Enhydra and Enhydra
XMLC applications. If you want to see the JavaDoc for underlying APIs of the Enhydra
development and runtime environment, you can run the _javadoc_ command to build new
HTML Web pages.

Enhydra Documentation and Source Code

Good documentation can make a great piece of software even greater. The JavaDoc that comes
with the open source distribution, shown in Figure 5.1, is a great way to become familiar with all
the methods available from the session manager class or the XMLC OutputOptions class, for
example.

Figure 5.1. Enhydra 3 JavaDoc.

 80

The JavaDoc browser provides multiple ways to search for the method you're looking for. You can
search by package, class, or sometimes most conveniently, an alphabetized list of all known
Enhydra methods. This includes all the methods belonging to the packages we toured in the
previous section.

If you've installed Enhydra 3 under /usr/local, you'll find the JavaDoc at

/usr/local/lutris-enhydra3.1b1/doc/user-doc/index.html

Don't forget, you also have access to the entire Enhydra 3.1 source code, downloadable from
enhydra.enhydra.org. If you're not sure how things work, such as the Enhydra Multiserver
classloader mechanism, odds are you can figure it out just by examining the source code.

Development, Runtime, and Deployment

Modern application servers address the topics of both development and deployment. For a
commercial situation, both are equally important, especially if you are building an application that
is to be supported, maintained, updated and re-deployed over time. Enhydra was designed to work
with your favorite development and development tools to build and deploy Enhydra applications.
On the other hand, armed with just your favorite text editor, open source Enhydra comes self-
contained with the tools necessary to support a full Web application lifecycle.

Figure 5.2 illustrates the major components of the Enhydra 3 runtime and deployment
environment. Administration, Web server connectivity, standard servlet support, and EAF are all

http://enhydra.enhydra.org/

 81

introduced in this section. Not shown in the figure are the development tools: Enhydra XMLC,
Enhydra DODS, and Enhydra Kelp.

Figure 5.2. High-level view of the Enhydra 3 environment.

Runtime and Deployment

The deployment features of Enhydra, including Enhydra Multiserver, Enhydra Director, and the
Enhydra Administration Console, address the real-world topics faced by a system administrator:
How do you connect with the Web server? How do you scale Enhydra as traffic demands increase?
How do you monitor deployed applications? The runtime components of EAF deal with the
Presentation, Session, and Database Managers and how they address the immediate needs of the
Enhydra application.

Enhydra Director

Enhydra Director gives Enhydra applications the capability to scale. Director uses load balancing
and cluster support to address the average scalability requirements of typical Web applications.

As a plug-in module for major Web servers, Director mimics the capabilities of Cisco Local
Director. Like this popular hardware router, Enhydra Director uses a simple round-robin algorithm
to route requests to two or more servers, each running a single instance of Enhydra. Support for a
cluster of multiple Enhydra servers is what gives Enhydra the capability to support server-level
fail-over. The session manager offers configuration hooks that make session-level fail-over
possible through custom development.

Note

The term lightweight framework is often applied to Enhydra, even though it has been used to
build many high-traffic sites requiring extensive processing. In fact, the majority of Web
applications built on top of J2EE platforms are done so without the use of EJBs. If you do not
require the use of EJBs, Enhydra is most likely sufficient for most of your application
building and deployment requirements. In particular, the ramp-up and development times are
particularly reduced by its simple application development model.

 82

Enhydra Multiserver

Enhydra Multiserver is the Enhydra servlet runner. It accepts HTTP/HTTPS requests directly from
the client or in-directly from Enhydra Director when routed from a Web server. The Multiserver is
designed to launch both EAF applications as well as standard Web Container (servlet 2.2)
applications. It works hand-in-hand with the Enhydra Presentation Manager to locate and launch
Enhydra applications.

Enhydra Administration Console

The Enhydra Administration Console is a Web application for managing the lifecycle of Enhydra
applications. Implemented as an Enhydra application, it can be run over the Internet for remote
administration as well as HTTP request/response and servlet API debugging. It addresses per-
application lifecycle (Start, Stop, Pause) as well as offering choices for connection types, such as
direct-to-Multiserver or through Enhydra Director. As a graphical tool, it makes it very easy to
visually debug HTTP requests and responses. Servlet API-level debugging is observable through a
small applet that gives administrators and developers the capability to view servlet API requests
on a per-URL request basis. The Admin Console is capable of managing EAF servlets as well as
standard Web Container servlets.

Configuration Files

Configuration files, called conf files, are ASCII text files that conform to
java.util.Properties file definitions. Different conf files are responsible for different
functions within the Enhydra environment. Their contents affect the behavior of Enhydra
applications as well as the Multiserver itself. Name-value pairs are used to instruct the Multiserver
and Enhydra applications where files are, where the database is, timeout parameters and so on. For
example,

Application.defaultURL=ShowApp.po

defines the default URL for the application. Conf files can also be used by individual applications
to access their own name-value pairs for persistence needs during runtime.

Note

It is highly likely that open source Enhydra make files and conf files will eventually be
replaced by ant, a popular new Java utility from the Apache Ant project that uses XML
configuration files and Java logic to give unlimited build control to the developer. ant has
replaced the use of make files in Lutris EAS 4, the J2EE version of Enhydra included in the
book's CD.

Development Overview

More than any other aspect of Enhydra, the development environment reflects Enhydra's
consulting heritage. The Enhydra development environment was developed by consulting
engineers. In 1996, they were very happy using the Unix command line, the GNU Make file
system, and standard Unix editors vi and Emacs.

As it turned out, this was a serendipitous beginning to the flexibility of the Enhydra development
environment. By beginning with the "lowest common denominator" of a command line

 83

environment, Enhydra was designed with minimal "policy" in terms of its features' assumptions
about the development environment.

This set the stage for the emergence of the Enhydra Kelp tools, which are plug-ins that give
Enhydra the capability to incorporate itself into popular IDE environments. Kelp is a growing
library of plug-ins designed for specific IDE tools, such as Sun's Forte, Oracle's JDeveloper and
Borland's JBuilder.

Figure 5.3 illustrates one perspective of Enhydra 3's integration with Forte. The dialog box is a
Kelp extension to Forte that presents the developer with compile-time options for compiling a
markup document with Enhydra XMLC. Compile-time errors are captured within the Forte
environment.

Figure 5.3. XMLC dialog inside the Forte Development environment.

As a Java Foundation Class (Swing) implementation, Enhydra Data Object Design Studio (DODS),
is Enhydra's only native fully graphical development tool. Lutris chose to build this application in
order to simplify the often redundant, time-consuming task of generating Java logic that maps
Java data objects to counterpart SQL database tables. DODS is not without its idiosyncrasies. It
has, however, become one of the more popular components of Enhydra development.

And, of course, there's Enhydra XMLC; you should have a pretty good feeling for its value by
now.

Note

What is the difference between Lutris Enhydra 3.5 versus Open Source Enhydra 3.1b1?

The good news is, very little. Lutris Enhydra 3.5 is Lutris' commercial version of Enhydra 3.1.
In order to expand the feature set of 3.5, Lutris added support for the W3C's extended DOM
interfaces of the cHTML, VoiceXML, and XHTML XML languages. Other than the expanded
documentation and standard product support features, there is little difference. Even in the

 84

absence of these extended DOM interfaces, you can still build any type of presentation based
on standard XML with Enhydra XMLC. However, without the specific extended DOMs, you
lose the benefits of comprehensive data typing. The result can be less readable, error-prone
code. All the examples in this book were built with Enhydra 3.1b1 except where noted.

Building and Running ShowFloor

Before we take a more in-depth, semi-systematic walk through the Enhydra environment, let's
slice our way through an Enhydra development experience. In doing so, you'll use the Enhydra
AppWizard to instantiate your ShowFloor application. In the process of creating this minimalist
but runnable stub application, we will identify and explore some key files, how they're organized
internally, and how they relate to each other. Finally, we'll wrap up with how you can launch this
first incarnation of the Enhydra ShowFloor application.

To present the path we are about to take, we've outlined a typical sequence of events that
characterize Enhydra application development:

1. Install Enhydra. This task is trivial and well-documented at enhydra.org as well as on the
book's CD.

2. Create your application source tree and build system with AppWizard.
3. Type make to build the tree.
4. Type ./output/start to launch the stub application.
5. Enter the development cycle. In no particular order, you might

a. Update your application configuration file with database connection values and
other information.

b. Use Enhydra DODS to design and build your database.
c. Continue with code development, creating business objects, and so on.
d. Test, test, test, launching with ./output/start.

Then there's the deployment phase that you begin when you're ready to test your application in a
staged environment. By staged, I mean that you want to mimic the production deployment
environment as much as possible on a staging server:

1. Migrate configuration and jar files to the Enhydra runtime environment.
2. Install the application through the Admin Console.
3. Launch the application from the Admin Console.

This, of course, is just a suggested outline. Let's explore the details of bootstrapping Enhydra
application development.

Note

There's that stub application reference again. What is it? A stub application is the application
that is automatically constructed by the AppWizard, pre-configured to reflect the desire to
build a standard Enhydra EAF application or a servlet 2.2 Web application. The result is a
simple "hello world" style application that you can run before you add a single line of Java
code.

Application Bootstrapping with AppWizard

Enhydra application development is performed inside a well-thought out source hierarchy that
encourages the organization of application design as three-tier architectures. The compilation

http://enhydra.org/

 85

process is managed by a hierarchy of make files, located in virtually every sub-directory. When
the developer wants to add new source files or resource files, such as image media, the local make
file must be updated as well.

The Enhydra Application Wizard (AppWizard) is the preferred method for bootstrapping the
application development tree. It is a JFC application that leads the developer through a series of
questions before creating the source tree. AppWizard is launched at the command prompt:

appwizard

AppWizard also supports command line options that make it possible to bypass the graphical
presentation altogether.

Let's initialize the ShowFloor application with AppWizard. Figure 5.4 presents the first two
AppWizard screens. They will lead you through the process of bootstrapping the application
development environment, initially asking you to choose the preferred servlet programming model:

• Enhydra Super-Servlet (EAF)
• Web Application (servlet 2.2)

Figure 5.4. The first two AppWizard screens.

Super-Servlet is another name for the single servlet Enhydra Application Framework. Web
Application represents standard servlet 2.2 Web Container applications. Figure 5.5 shows the Web
Application option. For this book, we will focus on EAF-style applications, although we spend
some time on how to perform XMLC development with standard Web Container applications.

Figure 5.5. Configuring AppWizard to generate a Web Container application.

 86

Enhydra Home Directory identifies the location of your installed Enhydra application server. Root
Path refers to the root of the source hierarchy. If you call the Project SFA for ShowFloor
Application, the root of the application source tree will automatically become

/enhydra/SFA

Finally, you can initiate the client type as HTML or WML. If you are using Lutris Enhydra,
version 3.5 or later, you'll have more options. We'll stick with HTML for now, adding other client
types by hand.

Note

No matter which style of servlet programming you choose, the AppWizard will assume you
are using Enhydra XMLC for the stub application presentation. To use JSP with the Web
Application model, you will have to perform a simple conversion.

The final two AppWizard screens are relatively trivial. The third AppWizard screen provides the
opportunity to generate copyright headings for the generated source files. In Figure 5.6, we've
added a simple SAMS Publishing copyright. The final screen shows the typical selection of check
boxes that you'll want to make. (The reference to Enhydra 4 addresses the Lutris EAS application
server and should be left unchecked at all times.) The shell scripts make it possible to easily
launch the generated application without having to install it under the Multiserver.

Figure 5.6. The last two AppWizard screens.

 87

Click Finish and you're on your way to a fully populated ShowFloor source tree for beginning the
development process. Before you take the next step of building the SFA stub application, let's take
a look at the composition of the source tree.

Enhydra Application Source Tree

The AppWizard has created the following types of files for ShowFloor:

• Configuration files
• Skeleton application Java files
• Skeleton application HTML file
• make files
• Startup script

These files are organized under two SFA sub-directories: input and src. Two more sub-
directories, output and classes, will be generated as a result of the make process. Table 5.6
explains their roles, as well as some additional sub-directories.

Table 5.6. Enhydra Application Directories
Directory Role
SFA/ Root of the ShowFloor application source tree.

Contains the parent make file used to build the entire
application.

src/ Location for all source code.
src/showFloor/ Directory named after the package created by the

AppWizard for our Show Floor Application.
src/showFloor/presentation/ Locations for the application's presentation objects,

markup files and associated media.
src/showFloor/business/ Location for the application's business objects.
src/showFloor/data/ Location for the application's data objects.
classes/ Directory for all generated application classes and

media files. These files are added to the jar file under
output/. As a collection of classes, this directory can
become very useful during the debugging process.
[Generated by make]

input/ Directory created by AppWizard for skeletal
configuration files and startup script.

input/SFA.conf.in File containing application-specific information, such

 88

as default URL name, session parameters, for
example, timeout.

input/servlet.conf.in File containing information for Multiserver servlet
runner, such as port number, channel, and filter
parameters.

output/ The generated jar file as well as the corresponding
configuration files and startup script from the input
directory are stored here. Unless configured to point
elsewhere, the Multiserver generates a log file here
as well. [Generated by make]

As you might have guessed, there is a direct relationship between the contents of the input and
output directories. The input directory contains configuration files and the startup script for
launching the Multiserver and the application. These files can be modified as needed by the
developer in the input directory from which they are copied during the make process into the
output directory. Note that the contents of the output directory are overwritten. So, be sure to
make your changes to the input configuration files only!

Note

Enhydra relies on the file layout of this single servlet environment to encourage a three-tier
application design. However, it's only a suggested organization, because there is nothing to
prevent the developer from building the entire application in, for example, the presentation
directory.

The ShowFloor Application Object

Every Enhydra application is represented by an application object. This object persists during the
lifetime of the executing application. The object is derived from the abstract class
StandardApplication. When the Multiserver launches an Enhydra application, the
application object is instantiated. It is at this time that the ShowFloor application can read the
initial parameters of operation as stored in its configuration file. After the application object has
been instantiated, the application is ready to receive HTTP requests.

Table 5.7 lists some of the fields that are inherited by the application as a subclass of
StandardApplication. The meaning of these fields will become more significant later in the
chapter.

Table 5.7. Selected Fields From the Enhydra StandardApplication Class
Field Description
appName The name of the application, otherwise defaults to the

unqualified class name.
config Config object for this application. Contains all keys and values

found in the application's configuration file.
databaseManager Database manager instance for application.
defaultUrl Default URL used for this application as defined in the

application configuration file.
logChannel The log channel for this application to write messages to.
presentationManager Presentation manager instance of this application.
sessionManager Session manager for all application sessions.
xmlcFactory XMLC Factory for dynamically loading XMLC-generated DOM

templates.

 89

Listing 5.1 shows the skeletal SFA application object represented by SFA.java, as created by
AppWizard. The method startup is invoked by the Multiserver when the application is booted.
RequestPreprocessor() is the only Enhydra method that examines all URL requests that are
associated with the application. It is therefore an ideal place to perform any preprocessing of client
requests. Upon examination of the request's content, you might want to generate a page re-direct at
this point. You can also perform extra security checks here as well. The Enhydra standard
debugger makes use of this facility in order to provide per-request debug information to the
Admin Console.

Listing 5.1 ./src/showFloor/SFA.java

package showFloor;

import com.lutris.appserver.server.*;
import com.lutris.appserver.server.httpPresentation.*;
import com.lutris.appserver.server.session.*;
import com.lutris.util.*;

public class SFA extends StandardApplication {

 public void startup(Config appConfig) throws ApplicationException
{
 super.startup(appConfig);
 // Here is where you would read application-specific
settings from
 // your config file.
 }
 public boolean requestPreprocessor(HttpPresentationComms comms)
 throws Exception {
 return super.requestPreprocessor(comms);
 }
}

Later in our discussion about configuration files, we'll revisit the application object and how you
can use it to access configuration data as well as capture URL/HTTP information before it arrives
at the presentation object.

Building the SFA Stub Application

You are now just a couple of steps away from running the stub application from which you will
construct the ShowFloor application. Pretty impressive, considering that you have yet to create a
single line of hand-crafted Java code.

Let's go to the head of the SFA source tree, /enhydra/SFA, and type

make

What follows is the cascading of make processes that will

1. expand the source tree to include (and populate) the classes and output directories, and
2. invoke xmlc and javac to compile the AppWizard-generated source files.

You now have the following ShowFloor tree, which has been expanded with a fully constructed
Enhydra application and the files and scripts needed for a simple, "in-tree" deployment. The only
missing components are the business and data source files that must be created from scratch by the
developer:

 90

./SFA
 readme.html
 Makefile
 config.mk

./SFA/classes
 /showFloor/presentation
 /showFloor/presentation/media
 /showFloor/presentation/media/Enhydra.gif
 /showFloor/presentation/media/Makefile
 /showFloor/presentation/RedirectPresentation.class
 /showFloor/presentation/WelcomeHTML.class
 /showFloor/presentation/WelcomePresentation.class
 /showFloor/SFA.class
./SFA/input
 /conf/servlet/servlet.conf.in
 /conf/SFA.conf.in
 /conf/start.in

./SFA/output
 /start
 /archive/SFA.jar
 /conf/servlet/servlet.conf
 /conf/SFA.conf

./SFA/src
 /showFloor/Makefile
 /showFloor/SFA.java
 /showFloor/business/Makefile
 /showFloor/data/Makefile
 /showFloor/presentation/Makefile
 /showFloor/presentation/options.xmlc
 /showFloor/presentation/Welcome.html
 /showFloor/presentation/RedirectPresentation.java
 /showFloor/presentation/WelcomePresentation.java
 /showFloor/presentation/media/Enhydra.gif
 /showFloor/presentation/media/Makefile

Launching the ShowFloor Stub Application

You can use the start script generated by the AppWizard tool, and migrated to output during
the make session, to launch the Multiserver and your Web application. If you look inside the
start script, you'll see that it invokes the Multiserver, passing the name and location of the SFA
application's configuration file.

Listing 5.2 shows what the startup script is doing to invoke the Enhydra Multiserver to launch
the SFA stub application. After ensuring that the Enhydra application server jar is on the Java
classpath, as well as accounting for the Windows versus Unix file system naming conventions, the
startup script invokes the Multiserver by passing it the SFA configuration file.

Listing 5.2 SFA/startup

JAVA="C:/jdk1.3/bin/java"
ENHYDRA_LIB="C:/usr/local/enhydra3.1.1b1/lib/enhydra.jar"

if ["X${ OSTYPE} " = "Xcygwin32"] ; then
 PS=\ ;
else
 PS=:

 91

fi
APPCP="${ ENHYDRA_LIB} ${ PS} ../classes"

if [! "X${ CLASSPATH} " = "X"] ; then
 APPCP="${ APPCP} ${ PS} ${ CLASSPATH} "
fi

exec ${ JAVA} \
 -cp "${ APPCP} " \
 com.lutris.multiServer.MultiServer \
 "./conf/servlet/servlet.conf"

So, what does the SFA configuration file have that would be interesting to the Multiserver?
Listing 5.3 brings out some of the answers. For instance, you can probably figure out that the port
number for the invoking URL will be at port 9000. There's also a log file that's pointed to in the
output directory. multiserver.log is the log file that the Multiserver will write all messages to
that are at the message levels listed in Listing 5.2, namely EMERGENCY, ALERT, CRITICAL,
ERROR, WARNING, INFO. As the developer, you might want to add the recognized value of
DEBUG as you beef up the SFA application with real functionality.

Listing 5.3 SFA/output/conf/servlet/servlet.conf

Server.ConfDir = "C:/enhydra/SFA/output/conf"
Server.LogFile = "C:/enhydra/SFA/output/multiserver.log"
Server.LogToFile[] = EMERGENCY, ALERT, CRITICAL, ERROR, WARNING, INFO
Server.LogToStderr[] = EMERGENCY, ALERT, CRITICAL, ERROR, WARNING,
INFO

Application.SFA.ConfFile = SFA.conf
Application.SFA.Description = "SFA"
Application.SFA.Running = yes
Application.SFA.defaultSessionTimeOut = 30

Connection.http.Type = http
Connection.http.Port = 9000

Channel.http.channel.Servlet = SFA
Channel.http.channel.Url = /
Channel.http.channel.Enabled = yes

Filter.StandardLogger.ClassName =
org.enhydra.servlet.filter.StandardLoggingFilter
Filter.StandardLogger.Description = "Standard Enhydra Logging."
Filter.StandardLogger.InitArgs.logFile =
"C:/enhydra/SFA/output/access.log"

Launching and accessing your ShowFloor stub application requires two steps. The first one is to
execute the startup script. Change directories to the output directory and type

./start

After you see that the Multiserver has displayed its copyright message, you'll know that the
Multiserver has SFA ready to receive its first HTTP request.

To generate that first request, invoke your favorite browser and supply the URL

http://localhost:9000

http://localhost:9000/

 92

The result is shown in Figure 5.7.

Figure 5.7. The SFA stub application presentation.

Pardon the Slight Delay…

As with most application servers, there is a detectable pause before the first application
presentation is displayed when the server receives an application's first URL request
since being started. In the case of Enhydra, there is a moderate delay when you first
launch Enhydra, followed by the first application. Some of the delay can be attributed to
a randomizer function that takes place only when an application is first launched. The
randomizer is used as part of generating a unique session key. All subsequent URL
requests will be noticeably faster.

Enhydra Multiserver

Now that you have some insight into the workings of the Enhydra development and runtime
environment, let's begin our expanded discussion of key Enhydra components.

The Enhydra Multiserver is the broker of the Enhydra runtime environment. It is responsible for

• supporting connection methods for linking clients to Enhydra applications, including
accepting HTTP or HTTPS requests directly;

• using classloaders to launch individual Enhydra applications; and
• serving the servlet 2.2 Web Container.

Connection Methods

How do you route an HTTP request from a client browser or client smart device to the launching
of a Java application? The delegation of this chore is traditionally made by the Web server to a
servlet runner. A servlet runner is often the Java extension of a Web server that handles the off-

 93

loaded HTTP/URL request, invoking the servlet that is responsible for servicing the URL in
question.

The Enhydra Multiserver is an enhanced servlet runner that was designed to take URL requests
directly or indirectly from a Web server. It is also a standalone Web server that alleviates the need
for a nearby Web server during development-time configuration.

Note

Over time, the Multiserver has become quite capable in a production deployment. However,
when it comes to serving static content, the Multiserver is no match for the well-tuned caching
features of standard Web servers.

Illustrated in Figure 5.8, the Multiserver can be configured to accept HTTP or HTTPS (secure
socket) requests directly (1) or indirectly through the Web server plug-in Enhydra Director (2, 3).
The protocol used between Director and Multiserver is a private protocol designed to support
Director's load balancing and fail-over capabilities.

Figure 5.8. Multiple scenarios for sending an HTTP request to Enhydra.

Multiserver's ability to accept HTTP requests directly was originally intended to simplify the
installation and configuration of a Web application development environment for developers,
making it especially easy for consultants to perform development on long plane rides between
Santa Cruz and Memphis.

Although it is still best to leverage a true Web server for serving static pages, it has become
popular to set up Enhydra deployments that distribute dynamic requests directly to the Enhydra
Multiserver. This was made particularly pragmatic by the addition of SSL support to enable the
Multiserver to process HTTPS-secure connections.

Classloaders for Application Partitioning

Enhydra Multiserver has all the features of competitive servlet runners. It also has unique
capabilities that address the improved lifecycle management of Java applications. This includes its
approach to loading applications as well as its support for the graphical Admin Console.

 94

Enhydra applications represent a collection of classes, usually contained in a single jar file. Each
application, using either EAF or Web Container, is assigned its own classloader by the Multiserver
for the entire running lifetime of that application.

The advantage of this unique classloader architecture is that applications are inherently partitioned.
This makes it possible to start and stop applications without bringing down the entire Enhydra
application server environment. This hot-swap feature is particularly important to ASP
environments when an upgrade of only one of a suite of applications is required.

Configuration Files

Enhydra configuration files tell the Multiserver everything it needs to know about its execution
environment and the applications that it must serve. Configuration files are also used by individual
Enhydra applications, including both EAF and standard Web applications, for their own startup
configuration needs. One of these Enhydra applications is the Enhydra Admin Console:

• ./conf/servlet/servlet.conf (when used with the start script)
• multiserver.conf (when the Multiserver is invoked generically)
• ./content/WEB-INF/web.xml (Web Container)
• SFA.conf (Enhydra EAF Application)
• multiserverAdmin.conf (Admin Console)

multiserver.conf

multiserver.conf is located at the root of the Enhydra application server distribution tree.
servlet.conf is located in the SFA application's output sub-directory. What is the difference
between these two files that are both read by the Multiserver? servlet.conf is needed only
when running the Multiserver locally while developing and debugging the application. After you
decide to deploy the SFA application, typically using the Admin Console, you no longer require
the servlet.conf file.

Note

We're introducing a lot of Enhydra in one big chapter. By covering the big picture, big ticket
items here, I can then introduce the second level points in subsequent chapters. We'll cover
them as we deploy pieces of ShowFloor.

The expected objects to be found in multiserver.conf are listed in Table 5.8.

Table 5.8. Expected Name-Value Pairs in multiserver.conf
Conf Entry Description
Application Application-specific information that instructs the Multiserver on location,

status, and configuration options.
Server Options and values that address the behavior and knowledge of the

Multiserver, such as where the jar file or classes for a specific application
are located.

Servlet Information for the Multiserver to know about running standard servlets.
Servlets can be added individually or as collections in WAR files.
Examples of servlets include the servlet "CGIRunner" used for executing
CGI scripts.

Connection Connection information used by the Multiserver to assign connection

 95

types, such as HTTP, HTTPS, or Director to individual ports.
Channel A description of the entry point between a connection and a servlet.
Filter Filters that can subsequently be associated with a particular channel. The

StandardLogger filter is the default logger assigned to application
channels.

The multiserver.conf contents that follow indicate where the applications are installed and
where log messages should be delivered:

Server.ConfDir = "/usr/local/enhydra3.1/apps"
Server.LogFile = "/usr/local/enhydra3.1/logs/multiserver.log"

[your application].conf

Every Enhydra application gets a conf file. It originates as the file /SFA/conf/SFA.conf.in
where SFA is the project name you are using for your ShowFloor application. It's automatically
generated by the AppWizard when you instantiate your application source tree. By default, your
application conf file contains the hierarchical name-value pairs shown in Listing 5.4.
@JAVA_DEPLOY_PATH@ is an Enhydra-specific directive used by the Enhydra ToolBox during
the make process. It points the Toolbox to the late binding information it needs to make sure the
migrated configuration file incorporates the correct directory path.

Listing 5.4 input/conf/SFA.conf

Comma separated CLASSPATH directories and files used by this
application.
Assumes run from the output directory for debugging.
If you run from the jar you must rebuild after every change to the
app.
Server.ClassPath[] = "@JAVA_DEPLOY_PATH@/../classes"
#Server.ClassPath[] = "@JAVA_DEPLOY_PATH@/archive/SFA.jar"

The fully qualified name of the application class.
Server.AppClass = showFloor.SFA

Prefix used to derive presentation object class
names and paths from URLs.
Assumes run from the output directory for debugging.
Server.PresentationPrefix = "showFloor/presentation"

Flag to indicate that application classes and resources should be
reloaded
automatically if ANY file in the CLASSPATH changes.
Server.AutoReload = false

Maximum number of minutes a user session can list.
SessionManager.Lifetime = 60

Maximum number of minutes a user may be idle before being logged
off.
SessionManager.MaxIdleTime = 2

If the URL "/" for this application is accessed, the user will be
redirected to this URL. This should be a relative URL.
Application.DefaultUrl = "WelcomePresentation.po"

 96

From the listing, we can see that the default application conf file provides default information to
the Multiserver, the Session Manager, and the Database Manager. Of course, if the application
forgoes the use of a database, the information is ignored and should be stripped out by the
developer.

The Config Object

The contents of the configuration files are made available to applications by the Config object.
Config is subclassed from the Enhydra KeywordValueTable class.

When the application object method startup is called, it receives the Config object for the
application to examine. The next four code fragments demonstrate how the application, including
the Multiserver Admin Console, use the Config class methods to access data from the keyword-
value table:

username = appConfig.getString("Admin.Username");
password = appConfig.getString("Admin.Password");
debugQueueSize = appConfig.getInt("Admin.DebugQueueSize");
saveResponseData = appConfig.getBoolean("Admin.SaveResponseData");

Other methods supported by Config support the capability to recover values that are listed as an
array, or to test for the presence of a particular key.

multiserverAdmin.conf

Just as Enhydra applications require a conf file, so does the Admin Console. As an Enhydra
application, the Admin Console can be used just as any Web application, particularly from remote
locations when remote administration is necessary.

As you can see in Listing 5.5, this conf file looks like any other Enhydra application configuration
file, with the exception of the application-specific name-value pairs at the bottom of the list. This
is where Username and Password are established, with admin and enhydra as the default
values. DebugQueueSize and SaveResponseData are specific to the debug and data capture
tools built into the Admin Console.

Listing 5.5 multiserverAdmin.conf

Server.ClassPath[] = /usr/local/enhydra3.1.1b1/lib/admin.jar
Server.AppClass = com.lutris.appserver.admin.Admin
Server.PresentationPrefix = "com/lutris/appserver/admin/presentation"
Server.AutoReload = false
Server.XMLC.AutoRecompilation = false
Server.XMLC.AutoReload = false
SessionManager.Lifetime = 60
SessionManager.MaxIdleTime = 20
SessionManager.MaxNoUserIdleTime = 4
SessionManager.IdleScanInterval = 30
SessionManager.RandomizerIntervals[] = 301, 1001, 5003
PresentationManager.CacheClasses = true
PresentationManager.CacheFiles = true
Application.DefaultUrl = "Admin.po"
Admin.Username = "admin"
Admin.Password = "enhydra"
Admin.DebugQueueSize = 64
Admin.SaveResponseData = true

 97

Logs, Filters, Channels, and Connections

The Multiserver provides the capability to monitor and track the interaction between the client and
an Enhydra or standard servlet application. Taking things one step further, the Multiserver
supports different connection methods for a single application. This feature makes it possible, for
instance, to debug an application over Multiserver's HTTP connection, bypassing the application's
Enhydra Director connection in a clustered deployment.

Channels are the data structure used by Enhydra to sort out the fact that one application can be
serviced through multiple connection methods. Each channel represents the association of three
entities:

• A URL
• An application
• A connection method (for example, HTTP, HTTPS, Director)

Enhydra Multiserver also supports the capability to apply software filters to each HTTP request,
independent of the particular connection type.

A typical configuration is shown here. First, the configuration file dictates that a connection
method of type http will be associated with port 9002. Recall that method http means that the
Multiserver will act as a Web server. The Channel key then associates that port configuration
with the StandardLogger filter, the application (servlet), and the URL:

Connection.HttpConn9002.Type = http
Connection.HttpConn9002.Port = 9002

Channel.HttpConn9002.WelcomeChannel.Servlet = SFA
Channel.HttpConn9002.WelcomeChannel.Url = /showfloor
Channel.HttpConn9002.WelcomeChannel.Filters[] = StandardLogger
Channel.HttpConn9002.WelcomeChannel.Enabled = yes

A StandardLogger is packaged with Enhydra, supporting standard levels that can be used by
the application developer to send messages that can be controlled and delegated by the
administrator using the multiserver.conf file. StandardLogger is a sub-class of the
abstract class Logger. If you were to write your own custom logger, you'd want to sub-class it
from Logger as well.

StandardLogger writes to the LogChannel object. Be sure not to confuse LogChannel with
the channels we just discussed. This object is the equivalent of a file descriptor that can be
adjusted via configuration file by the administrator:

Server.LogToFile[] = EMERGENCY, ALERT, CRITICAL, ERROR,
Server.LogToStderr[] = EMERGENCY, ALERT, CRITICAL, ERROR, WARNING,
INFO

The administrator can reset the list of logger levels depending on the situation they are in with
debugging an application, or simply maintaining a record of the state of the application over time.

Table 5.9 lists all the possible logger levels, some of which are used in the preceding sample conf
record. UNIX folks will recognize the heavy resemblance to syslog conventions.

Table 5.9. Supported Enhydra Logging Levels
Level
Keyword

Description

 98

EMERGENCY Indicates a panic condition.
ALERT A condition that should be corrected immediately, such as database

corruption.
CRITICAL Critical conditions such as bad device errors.
ERROR General errors that are not usually fatal, but must be resolved.
WARNING Warning condition that might need attention, although the need is not

immediate.
NOTICE Conditions that are not error conditions, but might require special

handling, such as infrequent conditions.
INFO General informational conditions, knowledge of which will help to keep the

server in good order.
DEBUG Messages that contain information normally of use only when debugging

an application.
CLASSLOAD Information about the loading of application classes. Very useful for

debugging class path problems.
REQUEST The StandardLoggingFilter logs hits to this facility if this is specified

(normally it writes to its own file).
XMLC Information about auto-compiling XMLC pages.
XMLC_DEBUG Debug information about auto-compiling XMLC pages.

Administration Console

The Enhydra Administration Console (Admin Console) is served by the Multiserver. In truth, the
Admin Console is implemented as an Enhydra application that is launched by the Multiserver like
any other Enhydra application. This implementation strategy enables the console to be run from
remote locations for administering other Enhydra applications served by the same Multiserver.

The Admin Console supports many tasks to manage the lifecycle of both Enhydra applications and
Web (servlet 2.2/WAR applications). These tasks include the following:

• Starting and stopping Enhydra and Web applications.
• Monitoring and capturing HTTP requests and responses.
• Monitoring the state of the database manager, session managers, and session objects.
• Establishing one or more connection methods between a single application and a

URL/port.

To access the Admin Console, the Multiserver must be running. You can start it up by executing
the following command:

/usr/local/enhydra3.1/bin/multiserver

To bring up the console, point your browser to

http://<your machine name>:8001

The Admin Console HTTP client requests and responds to the client. Requests are followed on
their path to the presentation object straight to the servlet API.

Later in this chapter, we'll show how to conduct a debugging trace at the servlet API level using
the console, as well as present the steps to an early deployment of the ShowFloor stub application.

 99

Enhydra Director

Enhydra 3 is often characterized as a lightweight server. That label is really motivated by the
absence of an EJB container. But the fact is that Enhydra powers very impressive Web sites and
applications, including Hewlett Packard's anywhereyougo.com, a site for wireless developers, and
Earthlink's Shopping Mall.

One of the keys to a high performance profile is the load balancing provided by Director. Director
has the distinction of being the only Enhydra logic written in a language other than Java. As a C
language implementation, Director was designed to install directly in the hosting Web server.
Director uses the native Web Server API to integrate with the Web Server. In the case of Netscape,
this is NSAPI. For Microsoft's IIS Web Server, it's ISAPI. And for Apache, it's the Apache
Module interface. For other Web Servers, Director defaults to using the standard CGI interface.

Session Affinity for Simple Fail-Over Protection

Director routes client requests to one or more Enhydra servers, illustrated in Figure 5.9. A
"cluster" of Enhydra instances, typically one per server system, give the enterprise administrator
greater options for increasing Web application scalability and fault tolerance. Director was
designed to be simple as well. It uses session affinity, or "sticky sessions" to ensure that a client,
represented by a particular "session ID," is always served by the same Enhydra application
instance.

Figure 5.9. Director for server-level load balancing and fail-over.

This approach to fail-over greatly reduces the complexity of the fail-over algorithm. Performance
is kept high because there's no need for session state to be saved to disk. The downside is that if
there's a crash, the current client is out of luck. The next client, however, is assured access to a
healthy server.

http://anywhereyougo.com/

 100

When more ambitious fail-over characteristics are required, the session manager can be configured
to save state to disk or database, in which case, with the addition of additional logic, the client's
session can be inherited by other Enhydra servers.

Note

Your requirements for server-level fail-over, session-level fail-over, redundancy, and so on
should reflect the natural goals of your application. Is your Web application designed for a
massive audience to browse and perhaps conduct e-commerce? If so, you'll probably want to
take advantage of Director's cluster support. The investment in designing your application for
session-level fail-over, on the other hand, might be a waste of time. If, on the other hand, your
application focuses on high-end corporate customers who cannot tolerate having their
application login "disappear" on them, then session-level fail-over might be a necessity. The
following section on Session Manager explains how Enhydra supports session-level fail-over.

Load-Balancing Algorithms

Director supports load balancing that selects from one of two algorithms according to traffic load.
A simple round-robin strategy for selecting which Enhydra server to route a client to is used when
traffic is low.

When traffic gets heavy, Director adopts a scoreboard load balancing scheme to measure the
current load of each Enhydra server candidate before determining which to route the request to.
The server with the highest score is assigned the next request. If traffic saturates the cluster and
the scoreboarding system, then Director returns to the round-robin algorithm.

The Enhydra Application Framework

We've journeyed from the deployment capabilities of Enhydra to the application environment
itself. Let's review how the structure, organization, and collection of common services affect the
design of Enhydra applications implemented with the Enhydra Application Framework.

The first perspective is the simple but powerful impact of a well organized source tree. The first
question one might ask is, "If EAF is the implementation of a single servlet, then how do you
consider Enhydra to support three-tier application architectures?" The answer is illustrated in
Figure 5.10.

Figure 5.10. Source organization of presentation, business, and data tiers.

 101

Yes, the fact is that you can write a two or monolithic one-tier application with Enhydra. But,
again, Enhydra was built for flexibility that would support solid three-tier application architectures
when desired. The term tier refers to a layer of coupling between different roles within the
application. Enhydra's default package structure gently encourages application designs that are
composed of a loosely coupled application architecture.

Presentation Object (./src/presentation)

It is the responsibility of the presentation object (PO) to add the presentation language, such as
HTML, XHTML, VoiceXML, or XML, to the results of queries made to business objects.

In standard servlet programming, there is normally a mapping of one servlet per page. In Enhydra
development, the mapping is one PO per page. Collectively, the POs represent the presentation
tier.

The PO is the controller piece of the Enhydra application. HTTP requests are mapped to a PO.
Every PO must contain a run() method in order to be launched when a URL request is matched
to that PO. We'll discuss this in detail in the next section. It is up to the PO to synthesize a
response and send it back to the client in the form of a response object.

Business Object (./src/business)

Business objects (BO) are the middle-tier portion of the Enhydra application that gives it its
distinguishing personality, such as "I am a financial application for hospitals," or "I calculate the
cost of making X numbers of copies at a Kinko's store." For the most part, the presentation and
data tiers are told what to do. The value is computed and delivered by the business layer.

Business objects are the Java files that contain no presentation information or SQL methods.
Instead, they represent the intermediary layer of logic that applies business rules to requested data,
then presents the results to the presentation logic for display. The BO has no knowledge whether
the client is accessing the application from a phone or browser. It also has no idea whether the

 102

data it requests is coming from a SQL database or another application. With the exception of a
single Make file, stub applications generated by AppWizard contain an empty source tree's
business sub-directory.

Data Object (./src/data)

The data object (DO) is responsible for satisfying the requests of the business objects by making
queries, typically of a SQL database, using the JDBC interface. Much of the hand coding work of
creating the data layer is alleviated by the use of the Enhydra DODS application, which we will
explore in greater detail at the end of this chapter.

Note

POBODO, Superservlet, Enhydra Application Framework. These are three labels, all of which
apply to the same implementation of a framework for building Web applications. On the
Enhydra.org mailing list, you'll find that Enhydra developers use them interchangeably.
POBODO, by the way, is usually pronounced "poh-boh-doh."

As with the business sub-directory, the source tree's data sub-directory is left empty by the
AppWizard.

The Pre-Request Application Object

The Enhydra application server's entry point for any Enhydra application is the application object.
The application object is created once when the application is started by the ./output/start
script, or by the Admin Console when it is fully deployed.

When invoked by the Multiserver, the application object can perform a number of optional tasks:

1. Examine the Config object from inside the application object's startup method.
Config contains all the key-value pairs from the application's conf file. An example of
this task was presented in the earlier section on application configuration files.

2. Use the calling of the requestPreprocessor() method to define how each HTTP
request is to be examined and tested for every request that is routed to the application.
RequestPreprocessor() is called by the Multiserver every time an HTTP request is
made to the application. By default, the calling of the requestPreprocessor() estab
lishes the session manager. This is a good place to determine whether the user is properly
logged in. If not, they can be re-directed to another page requiring them to log in.

How a Session Begins

Just the simple invocation of requestPreprocessor() sets up a session data structure if one
doesn't exist (meaning if this is the first request for a new session of the application by a specific
client). A login is not a prerequisite for a session to exist; therefore, you can use the session object
to save state information during the session whether or not a login has taken place.

Note

If the URL request references something other than a presentation object (that is, a file that
ends with something other than ".po"), then no session object will be created. Why, for
instance, would you want a session for the request of a GIF image?

http://enhydra.org/

 103

In Chapter 8, "HTML Presentations," we will demonstrate how to enforce a login for the
ShowFloor Admin interface.

Enhydra Services and the EAF Runtime

Let's introduce the Enhydra Services, or Managers, from the point of view of how a client's URL
request flows through an Enhydra application, as shown in Figure 5.11.

Figure 5.11. How a request flows through the Enhydra Application Framework for a
single application.

The three managers of the EAF are Session Manager, Presentation Manager, and Database
Manager. All these services are referenced in the packages found under
com.lutris.appserver.server.*. We will delay the discussion of the Database Manager
until the end of this section because it is an optional ingredient in the application's architecture.

The client HTTP request is processed by the Multiserver and interrogated from the application
object by the call to requestPreprocessor(). Recall that it is during the processing of the
requestPreprocessor that a session key is allocated and linked to the current application and
user session.

The Presentation Manager decomposes the request in order to match the request for an Enhydra
PO object to the PO's class. Once located, the Presentation Manager invokes the PO's run()
method.

 104

The PO, or any of the application's other objects, then has the option of querying the session
object associated with the user's current session. From the session object, the PO or BO may store
new state information or request information from prior session requests, including an answer to
the question "Is this person logged in?"

The generated markup that results from having processed the HTTP request is then streamed,
perhaps having invoked the writeDOM() call, from the PO through the Multiserver back to the
originating client. Attached to the URL is a session key that will be returned by the next client
request. It will be stored in the form of a cookie or an encoded portion of the URL (using the
technique of URL encoding). This key acts as a baton that the application uses to identify which
user session each request is associated with.

This is a high-level view of the possible flow of activity within a single Enhydra application. The
next sections deal with a more detailed view of the roles of key players and entities that make
these interactions possible.

Presentation Manager

If the Multiserver is the broker of Enhydra applications, the Presentation Manager is the broker of
Enhydra application pages. It processes the HTTP request in two simple steps:

1. Identifies the correct presentation object by matching the URL name (for example,
showfloor.po) to the presentation object (for example, showfloor.class).

2. Loads the selected PO by invoking the PO's run() method. Included in the call is the
comms object, which includes details about the session key, the request, and the response.

How the Presentation Manager handles the steps of processing first the login, then the request for
processing an Admin request is illustrated in Figure 5.12. This brings out the Enhydra
organization of one PO per user interface (that is, markup document). The session key that was
fetched from a cookie or an encoded URL is passed to both presentation objects in order to access
the correct user session.

Figure 5.12. How Presentation Manager fires off presentation objects.

 105

Listing 5.6 shows the SFA stub application presentation object source file as generated by
AppWizard. Welcome.class is the XMLC-generated DOM for that page. WelcomeHTML
stores the default "Hello World" presentation page template of the stub application.

Listing 5.6 ./showFloor/src/presentation/WelcomePresentation.java

package showFloor.presentation;

// Enhydra SuperServlet imports
import com.lutris.appserver.server.httpPresentation.HttpPresentation;
import com.lutris.appserver.server.httpPresentation.HttpPresentationComms;
import
com.lutris.appserver.server.httpPresentation.HttpPresentationException;
// Standard imports
import java.io.IOException;
import java.util.Date;
import java.text.DateFormat;

public class WelcomePresentation implements HttpPresentation {

 public void run(HttpPresentationComms comms)
 throws HttpPresentationException, IOException {

 WelcomeHTML welcome;
 String now;

 welcome = (WelcomeHTML)comms.xmlcFactory.create(WelcomeHTML.class);
 now = DateFormat.getTimeInstance(DateFormat.MEDIUM).format(new
Date());
 welcome.setTextTime(now);
 comms.response.writeDOM(welcome);
 }
}

Note

In servlet 2.2 development, there is only one instance of any servlet. You must therefore take
multithreading into consideration in order to satisfy multiple requests from multiple clients.
Member variables are global to all threads of the servlet instance. With EAF development,
each request creates a new instance of a single threaded presentation object. Therefore the
developer is freed of threading issues during development.

The comms object is an instance of the class

com.lutris.appserver.server.httpPresentation.HttpPresentationComms

It holds all the information the presentation object will need to know about the request. Some of
the fields associated with this instance are listed in Table 5.10. All parameter-value pairs, for
instance, passed along the URI are retrievable using the code. For example, the following URL

http://showfloor/register.po?mode=browse

will generate a single parameter called mode. The following line will retrieve the value browse:

String mode = comms.request.getParameter("mode");

Table 5.10. Selected Fields of the Comms Object
Field Description
application References the application object that this presentation is associated with.
request References the request object used to access HTTP request data.

http://showfloor/register.po?mode=browse

 106

response References the response object used to generate the HTTP response.
session References the session object that this presentation is associated with.
sessionData References the object of key-value pairs associated with the session.

The response that is generated by the presentation object, usually containing a string of HTML or
other markup formatted result, is delivered by writing out the manipulated XMLC DOM using the
writeDOM() method.

comms.response.writeDOM(welcome);

Session Manager

Because HTTP is a stateless protocol and therefore HTTP requests are inherently stateless, session
must be addressed by the application or its hosting framework. As should be expected, the EAF
provides a Session Manager for applications to store session state on a per-user basis.

There is one Session Manager assigned to each application. Upon request, the Session Manager
instantiates a single session object for each application's client session. The session object is then
used during the lifetime of the session to track the progress of the user session for which it is
responsible. How the application defines session is up to the application's architect. It is the
application's responsibility to either close the session or allow it to timeout.

The Session Manager uses cookies or the technique of URL re-writing to pass the session ID back
and forth between client requests. The session ID, as the name implies, is used to identify a client
request as belonging to a current session.

URL re-writing automatically appends the encrypted session key to the end of the URL. For
developers who want to avoid the cookie approach, the following key-value line in the application
configuration file will ensure that URL re-writing is used:

SessionManager.EncodeUrlState = Always

Tracking and Controlling Session Duration

There are number of features built into the Session Manager in order to address common concerns
about maintaining session state. Some of these features are required by real-world business
concerns, such as making it so that applications can be configured to timeout if a user leaves for
the day.

Using the application's configuration file, it's possible to dictate certain timing behaviors, such as
requiring a user to log in again after a certain period of time. Maximum session existence time and
maximum session idle time are some of the parameters that can be configured in the application's
configuration file:

SessionManager.Lifetime = 60
SessionManager.MaxIdleTime = 2

Implementing Session Level Fail-Over

It is possible to create robust fail-over hooks for Enhydra applications. By default, the session
manager saves state in memory, clearly the wisest thing to do for maximizing performance.

The Session Manager can be configured to save state information to memory (default mode), to
disk, or to a database:

 107

SessionHome.Mode: { BASIC | PAGE_TO_DISK | PAGE_TO_DB | CUSTOM}

In BASIC mode, the standard Session Manager manages sessions in memory. In PAGE_TO_DISK
the Session Manager saves session state to disk, and PAGE_TO_DB saves it to an indicated
database. CUSTOM is provided for those who want to implement their own session-level fail-over
scheme.

Database Manager

One of the many reasons that Enhydra is so flexible is its reliance on the JDBC SQL driver. The
JDBC specification is part of the J2EE specification and has been adopted by virtually every
database vendor of significance. JDBC supports everything from successful commercial databases
including Oracle and Informix, to well-known open source databases mySQL and PostgreSQL.
Even Enhydra.org has its own freeware SQL database, InstantDB, as sponsored by the
instantdb.enhydra.org project (and used in this book for the ShowFloor application).

As with the Session and Presentation Managers, there is one Database Manager per application.
Upon instantiation, the application's Database Manager reads the configuration file associated with
the application. The configuration file includes

• The URL (location) of the database.
• The login information required by the database.
• The mapping of the database's types to the logic database types.

The Database Manager deals with issues that no application wants to. It manages runtime
connection to the logical database, as presented through the eyes of JDBC. Enhydra relies
completely on JDBC for its database independence.

ShowFloor Database

Let's examine what the configuration file might look like for the ShowFloor application and its use
of the InstantDB database. Here is where you create a virtual name for the database,
"ShowFloorDB":

DatabaseManager.Databases[] = "ShowFloorDB"
DatabaseManager.DefaultDatabase = "ShowFloorDB"
DatabaseManager.Debug = "false"
DatabaseManager.DB.ShowFloorDB.ClassType = "Standard"
DatabaseManager.DB.ShowFloorDB.ClassType = "Oracle"
DatabaseManager.DB.ShowFloorDB.JdbcDriver =
"org.enhydra.instantdb.jdbc.idbDriver"
DatabaseManager.DB.ShowFloorDB.JdbcDriver =
"oracle.jdbc.driver.OracleDriver"
DatabaseManager.DB.ShowFloorDB.JdbcDriver =
"sun.jdbc.odbc.JdbcOdbcDriver"

The debug mode dumps the SQL statements as they're sent to the database. You'll set the database
class type to Standard because you're using the Enhydra InstantDB database engine. As you can
see, there are class types specific to different databases, such as Oracle. The Database Manager is
instructed to use the InstantDB JDBC driver.

Note that we've left a number of commented out Oracle references. It's quite possible that after
you move the application to the staging environment, you will want to switch the Database
Manager to point to the larger capacity Oracle database.

http://enhydra.org/
http://instantdb.enhydra.org/

 108

The InstantDB database comes with its own set of operations and configurations for conducting
itself, such as debugging activities, conversion values, and so on. Here you set the connection
URL to point to the InstantDB environment:

#DatabaseManager.DB.ShowFloorDB.Connection.Url =
"jdbc:idb:@OUTPUT@/discRack.prp"
DatabaseManager.DB.ShowFloorDB.Connection.Url =
"jdbc:idb:/enhydra/jack/jack/db/jack.prp"

Part of the Database Manager's role is to simply establish the connection with the database for the
application. A user name and password are required, which are set to null here. Transparent to the
user, this needs to occur only once during the lifetime of the application:

DatabaseManager.DB.ShowFloorDB.Connection.User = ""
DatabaseManager.DB.ShowFloorDB.Connection.Password = ""

The Database Manager can be told the maximum number of connections to hold in the connection
pool. Setting it to 0 means that the Database Manager will simply wait until the database itself
refuses any more new connections. Related to this, you can also allocate the time required before a
timeout occurs while the Database Manager waits for a connection request to be satisfied by the
database. During development time, all of this can be monitored in debugging mode, which is set
to False here:

DatabaseManager.DB.ShowFloorDB.Connection.MaxPoolSize = 30
DatabaseManager.DB.ShowFloorDB.Connection.AllocationTimeout = 10000
DatabaseManager.DB.ShowFloorDB.Connection.Logging = false

Finally, the Database Manager can be configured to limit the number of object identifiers it retains
in memory. Object identifiers refer to the data objects that are created:

DatabaseManager.DB.ShowFloorDB.ObjectId.CacheSize = 20
DatabaseManager.DB.ShowFloorDB.ObjectId.MinValue = 1000000

We'll walk through the complete inclusion of the InstantDB database for the ShowFloor
application later in the book.

Enhydra DODS

At this point, let's return to discuss some of the Enhydra development tools. We've already
covered AppWizard, and Enhydra XMLC is obviously addressed elsewhere. So let's focus on the
tool for giving our application real persistence capability.

The Enhydra Data Object Design Studio, DODS, is a tool that offers a graphical, object-oriented
user interface for creating schema definitions. DODS then generates the resultant definitions into

• SQL scripts for the definition, creation, and dropping of tables
• Java code for the third-tier data objects that will query and access the data objects

represented by each row of the corresponding SQL table.

DODS is provided as a convenience by the Enhydra development environment. There's nothing
that prevents the developer from generating their own query-building JDBC code or the SQL
statements to manage the lifecycle of the database. But with the availability of DODS, there's little
reason left to spend more time than required to churn out some data logic.

 109

Figure 5.13 shows that we've used DODS to insert two packages, Product and Vendor. For
each package, we've created two data objects, Product and Vendor. Data objects correspond to
tables in the database. For each data object, we now start adding attributes. Each attribute
corresponds to the column of a table.

Figure 5.13. DODS with Product and Vendor packages created.

The relationship between Vendor and Product is a one-to-many relationship. In other words, a
booth's vendor might have one or more products. To achieve this representation at the data object
level, Figure 5.14 shows show we selected the VendorDO (vendor data object) as the "Java Type"
attribute referenced from the Product data object.

Figure 5.14. Referencing the Vendor data object from the Product attributes for
a one (vendor)-to-many (products) relationship.

 110

After we've fully added the attribute, as seen in Figure 5.15, there's an arrow pointing from
Product to Vendor, indicating that Product uses Vendor. The Vendor attribute in Product
now references the Vendor data object.

Figure 5.15. Product data object with a reference to the Vendor data object.

Note

 111

When you create your data object (table), you can select the Cached option if you want the
entire table loaded into memory during application start-up. The generated query object
applies its operations directly to the cache, not the database. This approach, assuming it's an
economically sized table, has obvious performance benefits. This is just an example of the
many configuration options provided by DODS.

DODS saves all the generated information in the form of a DOML file. Our work is listed in
Listing 5.7 as a DOML file.

Listing 5.7 ./showFloor/src/data/data.doml

<?xml version="1.0" encoding="UTF-8"?>
<doml>
 <database database="Standard"
legal_values="Standard,InstantDB,Oracle,Informix,Msql,
Sybase,PostgreSQL">
 <package id="showFloor">
 <package id="showFloor.data">
 <package id="showFloor.data.vendor">
 <table id="showFloor.data.vendor.Vendor">
 <column id="Address">
 <javadoc>/**
 * Address of Vendor's headquarters
 */</javadoc>
 <type dbType="VARCHAR" javaType="String" size="64"/>
 </column>
 <column id="venName" isIndex="true" usedForQuery="true">
 <javadoc>/**
 * Name of Vendor Company
 */</javadoc>
 <type dbType="VARCHAR" javaType="String" size="64"/>
 </column>
 </table>
 </package>
 <package id="showFloor.data.product">
 <table id="showFloor.data.product.Product">
 <column id="prodName" isIndex="true" usedForQuery="true">
 <javadoc>/**
 * Name of a product.
 */</javadoc>
 <type dbType="VARCHAR" javaType="String" size="32"/>
 </column>
 <column id="Description">
 <javadoc>/**
 * Description of the product.
 */</javadoc>
 <type dbType="VARCHAR" javaType="String" size="128"/>
 <initialValue>No description provided.</initialValue>
 </column>
 <column id="Vendor">
 <javadoc>/**
 * Reference to Vendor data object
 * for one-to-many relationship.
 */</javadoc>
 <referenceObject
reference="showFloor.data.vendor.Vendor"/>
 <type dbType="none"
javaType="showFloor.data.vendor.VendorDO"/>
 </column>
 <column id="Vers">

 112

 <javadoc>/**
 * Version number of product.
 */</javadoc>
 <type dbType="VARCHAR" javaType="String" size="16"/>
 </column>
 </table>
 </package>
 </package>
 </package>
 </database>
</doml>

Now select Build All from the DODS menu to generate the code that you'll use in your ShowFloor
data layer, as well as the SQL commands to create the corresponding SQL tables. Table 5.11 lists
the three files related to the Product table that DODS generates from having processed the
DOML file.

Table 5.11. Auto-Generated Files From Enhydra DODS
ProductDO.java Represents a new or existing row in the Product table.
ProductQuery.java Retrieves Product data objects for a row in the Product table.
ProductSQL.sql Contains the CREATE_TABLE statement for building the Product

table.

Initially limited to working with new tables only, DODS has been modified to support existing
tables as well.

QueryBuilder for Advanced Queries

QueryBuilder is a helper class used by all the DODS Query classes. If you want to go straight
to the database and apply "where" clauses for advanced queries, use the QueryBuilder object.
This is the preferred approach when performing tasks that simply read from the database, such as
a report generation activity.

Debugging an Enhydra Application

There are many ways to debug an Enhydra application that go beyond the insertion of
System.out.print statements. Of course, if you take advantage of Enhydra Kelp and your
supported IDE environment, you can debug an Enhydra application just like any other Java
application. The fact that you have source code to the Enhydra application server itself creates an
even more thorough debugging environment.

Discussed earlier, built into every Enhydra application is the capability to write to a log file at
different message levels, one of which is DEBUG:

public static void writeDebugMsg(String msg) {
 Enhydra.getLogChannel().write(Logger.DEBUG,msg);
}

To activate the DEBUG level, simple add the DEBUG name to the list of logging levels associated
with the LogToFile keyword in the multiserver.conf file:

 113

Server.LogToFile[] = EMERGENCY, ALERT, CRITICAL, ERROR, WARNING, INFO,
DEBUG

This feature is great for post-deployment runtime debugging.

Admin Console Debugging

Another debug feature is provided by the Administration Console. From the control panel,
selecting the Debug button pops up the Debug window, containing the only applet used in the
entire Enhydra environment (see Figure 5.16).

Figure 5.16. Entering Debug mode from the Administration Console.

In the figure, I've loaded the servlet 2.2/JSP 1.1 Number Guess game written by Jason Hunter and
have started guessing numbers. Simultaneously, I've begun monitoring the GET requests as they
appear over the HTTP channel.

Debug generates output under the tabs: REQUEST, TRACE, SESSION, and RESPONSE.
Clicking on the GET link in the applet takes you to these tabs. The following lines show the initial
servlet calls under the TRACE tab. Note the absence of parameter values, which is expected
because I haven't yet entered my first guess:

getAttribute(javax.servlet.include.request_uri) = null
getParameterValues(jsp_precompile) = []
getQueryString() = null
getHeader(:aff:) = null
getAttribute(numguess) = null
getParameterNames() = { }
setStatus(200, OK)
addHeader(Date,Sun, 01 Jul 2001 19:12:47 GMT)
addHeader(Status,200)
addHeader(Content-Type,text/html)
addHeader(Servlet-Engine,Enhydra Application Server/3.1.1b1 (JSP 1.1;
Servlet
2.2; Java 1.3.0_02; Windows 2000 5.0 x86; java.vendor=Sun
Microsystems Inc.))
addHeader(Set-Cookie,JSESSIONID=yALY_3Vv-Ul-
qh2iDlOJIiCy;Path=/examples)
getOutputStream() =
org.enhydra.servlet.connectionMethods.http.HttpOutputStream@7653ae

 114

ServletOutputStream: write(byte[8192], 0, 566)
Elapsed time: 2163 milliseconds.

Having entered the first guess, 15, I click on the newly appeared GET for numguess.jsp. Now
you can see that the JSP was passed the parameter guess with the value of 15:

getQueryString() = guess=15
getAttribute(numguess) = null
getParameterNames() = {
 Guess
}
getParameterValues(guess) = [
 15
]
setStatus(200, OK)

Deploying Enhydra Applications

So far you've been launching the SFA stub application from inside the development tree. Now
you're going to go through the steps of migrating the application and its configuration file to the
Enhydra application server environment. You will then launch the application in the same manner
that an administrator would:

1. Copy ./output/archive/SFA.jar to /usr/local/enhydra3.1/lib/.
2. Copy ./output/conf/SFA.conf to /usr/local/enhydra3.1/apps/.
3. Comment out the first line of the Server.Classpath variable and uncomment the

second line, so that it reads:

Server.Classpath[] = "/usr/local/enhydra3.1/lib/SFA.jar"

That's about it as far as "migration" goes. Now, let's launch the Multiserver, then the Admin
Console:

1. Invoke the Enhydra application server with this command:

/usr/local/enhydra3.1/bin/multiserver&

2. From your browser, enter the URL http://localhost:8001 with the username as admin and
using the password enhydra.

3. Click the Add button from the Control window.
4. Select SFA from the pop-up menu, then click OK. You will see a message indicating the

successful addition of the SFA application.

You should now see a Status window focused on the status of SFA. The next step is to assign a
connection method to SFA. To do this,

1. Select the CONNECTIONS tab.
2. Click Create. This will generate a pop-up dialog window called Add New Connection.
3. Select the default connection method of HTTP. This bypasses the need for a Web

server/Director combination. Change the port number to 9002. (You can select any port,
as long as it doesn't conflict with another application and, if you don't own root
(Administrator) access, is greater than 1000. The highest value you can select is 65535.)
Click OK. Click OK in the acknowledgement pop-up window that follows.

http://localhost:8001/

 115

4. Now is the time to fire up the SFA application. Click Start in the control panel. You'll see
the connecting URL, http://localhost:9002, become a live link. Select the link to bring up
a new browser to access the SFA application.

You should now be viewing the SFA stub application.

Summary

If you still believed Enhydra was a lightweight server, by now you might have another opinion.
Enhydra is clearly a complete application server. The number of development tools are modest but
strategic. And where Enhydra punts on having its own IDE, it has a system for plugging into your
favorite IDE.

I've attempted to introduce enough about Enhydra and the Enhydra Application Framework to
establish a working knowledge of what it takes to build a Web application. Many of the topics that
were introduced will be expanded upon in the remainder of the book.

http://localhost:9002/

 116

Chapter 6. XMLC Basics
IN THIS CHAPTER

• HTML in an XML World
• Selected XML Basics
• Selected HTML Basics
• Selected DOM Topics
• XMLC Features and Functions
• Working with Templates
• How XMLC Constructs a DOM Class
• Enhancing Performance with LazyDOM
• Summary

It's true that much of the implementation details of HTML and XML show through the surface of
XMLC programming. In the case of XML, this is not much of a problem, given XML's success as
an evolving standard for transmitting data from one entity to another. HTML, on the other hand,
shows no signs of going away. In fact, the HTML browser is playing a significant role in the
evolution of display devices, and should therefore be taken seriously, despite its historical quirks.

The first half of this chapter addresses key topics in the relationships of HTML, XML, and the
Document Object Model (DOM). These topics directly or indirectly affect the design of Enhydra
XMLC, its features, and the look and feel of XMLC development. My hope is that by reading this
chapter you will understand the "XMLC sandbox" to a depth that will assist you with
circumventing typical conceptual issues that plague those who haven't looked beyond the API.

Note

During the writing of this chapter, it became clear to me that many of the questions asked
about XMLC, XML, and DOM programming could easily be offset by a fundamental
understanding of what XML and DOM development is all about. Be sure to take some time to
browse the excellent documents at www.W3C.org to learn everything from the details of
VoiceXML to historical facts on the origins of DOMs and HTML.

The second half of this chapter introduces XMLC features, capabilities, and concepts as organized
by development time and runtime. We'll discuss the meaning of DOM templates, as well as
highlight interesting XMLC methods and innovations, including how the XMLC compiler
constructs the DOM-building Java logic. We'll wrap up with some of the more interesting XMLC
innovations, including the performance-conscious LazyDOM. Many of these topics will set the
stage for the introduction of the xmlc command and its command line options, described in
Chapter 7, "The xmlc Command."

Chapter 2, "XMLC Development," was a crash course introduction of XMLC and DOM
programming basics. Before we explore XMLC development in detail, we will now turn to the
XML/HTML side of the equation and look back at how it relates to the DOM.

HTML in an XML World

As part of the widespread adoption of well-known Internet technologies, there are still a few
places where historical artifacts continue to hinder the development tasks of designers and
developers. One of these is HTML. In a perfect world, HTML would simply be another XML

http://www.w3c.org/

 117

language. But it isn't. Because real-world HTML often violates the requirements of a well-formed
XML document, browser parsers are expressly written to handle the idiosyncrasies of HTML
markup.

To be fair, HTML was derived from the SGML world for the purpose of addressing the needs of
browsers in the World Wide Web. The development of the DOM was inspired to first address
representative HTML documents. XML came along later, with its new notion for defining well-
formed documents. Combined with a presentation-free philosophy, XML made it possible to
create markup without a special-knowledge parser to process it. A rapidly evolving device market
and the success of XML has motivated the definition of XHTML, HTML's heir apparent.

The irony is that the most common reason for using XMLC, namely generation of HTML
documents, is the "special case" when it comes to XMLC's support for multiple markup languages.

For the foreseeable future, HTML will remain king in the browser world, while XML takes on the
mobile market. Luckily, the DOM specification, the middleman of XMLC, was originally
developed with HTML in mind. Let's review XML and HTML to make this situation more clear,
and explain how XMLC has adapted to this reality.

Note

With so much emphasis placed on HTML, is XMLC really better suited for HTML
development? The answer is absolutely not. XML takes care of a lot of issues that make
XMLC's life easier. HTML is more of a "squeaky wheel" situation that happens to still reflect
the dominant Internet markup language.

XML Rules for Well-Formed Documents

XML establishes a set of rules for creating markup languages, referred to as "XML applications."
VoiceXML, SVG (Scalar Vector Graphics), WML (Wireless Markup Language) and XHTML are
examples of XML applications. These markup languages happen to be standards created by the
W3C, the same group that delivered the XML and DOM specifications.

But XML is not just about creating standard XML languages. XML starts with rules that describe
markup documents that can be understood by any XML compliant parser, without a pre-existing
standard defining the document's language (that is, grammar). If the document conforms to these
rules, then it is considered a well-formed document.

Note

If the term "XML application" throws you off, think of it in terms of the application of XML
toward solving a particular problem, such as a set of business requirements, or how to define a
standard document model for the parts list of rocking chairs.

The set of rules that guarantee well-formed XML documents include the following:

• An element containing text or elements must have start and end tags.
• An empty element must have a slash before the end bracket.
• All attribute values must be in quotes.
• Elements must not overlap.
• Isolated markup characters may not appear in parsed content.
• Elements are case-sensitive.
• Element names may only start with letters and underscores.

 118

Compliance with these rules makes it practical for a world of generic XML parsers to parse well-
formed XML without any prior knowledge of the XML language. Without well-formed
documents, generic XML parsers can't parse. The consequence of non-conformance is reflected in
the HTML industry, where custom parsers are required on a per-HTML basis. Even worse, HTML,
which requires a DTD, doesn't always need one, because the custom parser already has built-in
DTD knowledge. Imagine the version control issues!

Finally, XML focuses on data, not the presentation of that data. That makes XML applications
highly portable when it comes to rendering XML content over a wide range of display devices.
Use of a well-formed document means that a transformation language such as XSLT or XMLC
can perform operations to turn a markup document from one format into another, a topic discussed
earlier in Chapter 3, "Presentation Technologies."

Document Models and Standards

Describing a well-formed document is not always sufficient. Whether you're creating a standard
XML language for an industry wireless standard, an inter-office communications standard within
a corporation, or simply communicating cooking recipes, you must describe a document model.
With a document model, your markup language approaches the XML promise of "self-describing
data."

Defining a document model for an XML language is a prerequisite for standardization. Without a
document model, your well-formed XML document would have an unlimited vocabulary, no limit
on attribute usage, and no grammar rules to indicate, for instance, what an element can contain.

For instance, WML addresses the issue of delivering a pared-down set of user interface
components that can be supported by the limited resources of mobile phones. WML and other
industry standard XML applications, such as VoiceXML and XTHML, share the following
common traits:

• They abide by basic rules defined by XML.
• They define a document model that formally defines their structure and grammar.

How do you create a document model? There are a number of ways, including creating XML
schemas, which use an XML format for validating other XML documents. However, despite its
antiquated, non-XML format, and until XML schemas are picked up by major standards efforts,
the dominant method for defining document models is the Document Type Definition, or DTD.
DTDs are an essential convention for the W3C specifications. DTDs share a common attribute
with HTML in that they are both derived from the influence of the SGML world. DTDs address
the following concerns:

• Defining the list of valid elements.
• Defining language grammar or content model, which describes the relationship of one

element to another, such as which elements can reside in other specified elements.
• Defining the attributes for each element, including the attributes' possible values, data

types, and behavior (for example, required or optional).

All the world's standard XML languages have document models by definition, and most of them
are described in DTD format. The following example is a fragment from the WML DTD, defining
the element card, which functions similarly to an HTML anchor. As you'll learn later in the book,
WML supports the notion of decks of cards, with cards containing all the content you might fit
into a mobile phone's display:

!ELEMENT card (onevent*, timer?, (do | p)*)>
<!ATTLIST card

 119

 title %vdata; #IMPLIED
 newcontext %boolean; "false"
 ordered %boolean; "true"
 xml:lang NMTOKEN #IMPLIED
 %cardev;
 %coreattrs;
 >

In the case of a custom XML document that you might create, is the lack of a DTD a showstopper
for XMLC? Absolutely not. However, it does remove one of the more compelling advantages of
XMLC programming. There are cases where you will create your own XML document, for
example, to transmit structured data to and from a J2ME or Flash client, both of which are
illustrated later in the book. You have the option of creating a DTD to define id and class
attributes. Without the DTD, your application logic will have to work harder, taking on the
overhead of basic DOM traversal, to accomplish simple changes to the document.

HTML, the Special Case

According to the rules of XML, HTML is a malformed XML document. Again, the reason lies in
historical precedence. HTML was defined as a child of the SGML standard, before the well-
formed influence of XML existed. XML is also an ancestor of SGML, with the basic rules added.
And XHTML is the industry's attempt to correct this situation.

There are a number of situations that reflect HTML's divergence from XML's definition of well-
formed, and why HTML assumes a specific parser will process it (for example, the Netscape
browser parser):

• HTML is not case-sensitive. XML is.
• HTML does not require a slash before the right bracket in empty elements.
• HTML performs extra removal processing of new lines and white space, whereas XML

preserves white space as part of the content. As we'll discuss later, this behavior often
leads to the misuse of CDATA sections to coerce the generation of HTML.

• HTML does not support custom entity declarations, whereas XML does.

XML also promotes a philosophy of keeping display formatting data out of content in order to
make data as portable as possible. This, too, is where XML and HTML diverge:

• HTML incorporates elements, such as or <I>, that address presentation, not content.
• HTML relies somewhat on stylesheets for presentation and formatting. XML relies

exclusively on stylesheets for presentation information.

It is the result of this divergence that partially explains why XMLC incorporates two HTML
markup parsers, namely HTML Tidy and the Swing parser. Each takes its own approach to trying
to deal with malformed markup.

Note

It's a fact that browsers as "display devices" are not going away. In fact, they're actually
becoming more broadly accepted as they continue to prove their versatility. It turns out that
browsers are the perfect display strategy for many of the newly emerging devices in our cars
and homes.

There are more motivations for fixing HTML, rather than simply addressing its incongruity
with XML. These include improved form handling, and the presence of too many variations
of stylesheet implementations. There's also the task of defining a version of HTML that can

 120

service both tiny screens with simple needs as well as highly rich clients, by leveraging other
emerging XML languages, including SVG. XHTML is the work in progress that will take
advantage of the opportunity and need to get HTML in line with the rest of the markup world.

Selected XML Basics

There is an abundance of XML books for becoming well-versed in the topics of XML, DOM, and
DTDs. Given that fact, we will confine our rapid review of the anatomy of XML documents to the
topics that most directly affect XMLC programming.

XML presents a tree-based view to describe a document: how the document identifies itself, and
how it structures its contents. But first, it must introduce itself, its document type, and perform
some housekeeping chores to refer to any required resources (such as an externally located DTD).

Document Prolog

An XML document identifies itself with a document prolog located at the first line or lines of the
document. The document prolog typically contains two declarations—the XML declaration and
the document type declaration (DOCTYPE). For instance, the XML declaration

<?xml version="1.0"?>

brands the file as an XML document, and therefore not an HTML document. This is how an XML
document indicates to a software application that it must be processed by an XML parser. The
XMLC compiler reads the first line of the document prolog to load the appropriate parser.

Listing 6.1 shows the markup page for a WML stub application generated by the Enhydra
AppWizard. This listing demonstrates how an expanded document prolog is used to identify the
document type as WML, and the whereabouts of its document model described by a DTD.

Listing 6.1 Welcome.wml

<?xml version="1.0"?>
<!DOCTYPE wml
 PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
 "http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card id="card1" title="SFA6">
 <p>Server time:</p>
 <p>
 <em id="time">00:00:00
 </p>
 </card>
</wml>

The PUBLIC identifier indicates the DTD to use, its name, and location.

A document prolog can also be expanded to reflect the document encoding. By default, XML
encoding is set to UTF-8. The following markup shows how to override the default character set,
in this case, to Chinese Big 5:

<?xml version="1.0"? encoding="Big5" standalone="yes"?>

 121

Elements and Attributes

Elements, which are often and somewhat incorrectly referred to as "tags," are the building blocks
of XML. They can be viewed as containers of content and other containers. Attributes are in-line,
name-value pairs that give elements their personality. Structurally, one or more attributes, when
used, appear to the right of an element, as seen here:

<name attr1="value1" attr2="value2">some content </name>

An attribute may modify the treatment that an element receives during processing. It can also be
used to uniquely identify one like-named element from another. This is the typical roll of the id
attribute as defined by HTML, and the id data type when indicated in an XML DTD.

For XMLC development, we are particularly interested in the attributes id and class for
identifying XML and HTML elements targeted for runtime manipulation. The DTD entity for
adding the id attribute to a DTD might look something like

<!ELEMENT Vendor (#PCDATA)>
<!ATTLIST Vendor id ID #IMPLIED>

where the element Vendor is defined, then assigned an optional id attribute by the ATTLIST
declaration. The data type id has the special significance that ensures that any value associated
with the attribute id is a unique value per instance of the Vendor element. In other words, you
cannot use the value-pair id=blue more than once for the same element name.

Caution

You must declare the id attribute in a DTD if you want XMLC to generate access methods
using inserted id attributes. If you insert an id attribute into an XML file that you compile
with XMLC and fail to define the id attribute in a DTD, then XMLC will generate an error.

You can override the error by passing the -validate no option to XMLC, but no accessor
methods will be generated.

Entities and Entity References

Entities are like constant values that define content that is substituted in entity references located
elsewhere within a document. Adobe Illustrator, for example, takes advantage of entity values in
order to reduce the complexity of files generated in SVG format, an XML application. Instead of
repeating the same lengthy string of font information throughout the document, the SVG file
defines a short entity name that represents the font, simplifying its use in the rest of the document.

Entities may be defined in a DTD or within the document itself, embedded as an "internal subset"
in the document prolog:

<?xml version="1.0"?>
<!DOCTYPE booth SYSTEM "dtd/booth.dtd"
[
 <!ENTITY vendorName "SAMS Publishing, Inc.">
]>
<booth>
<sponsor>
<Description>&vendorName;</Description>
</sponsor>
</booth>

 122

This sample document shows an internal declaration containing a single entity definition. It may
be inserted in one or more places by entity references within the document using the form
&vendorName;. An entity reference can be embedded in content, or even the value of a class
attribute.

Selected HTML Basics

Because HTML still dominates the use of XMLC programming, I will invest some time to call out
the features of HTML that differ from general XML. In essence, because HTML has its own
required DTD (or in lieu of that DTD, a Netscape or Explorer browser parser that has built-in
knowledge of HTML), we're really talking about the HTML document model.

HTML requires one of three DTDs: strict, transitional, or frameset (when frames are used). When
a Web page refers to an HTML DTD, you will see the document project contain something like
the following line:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/
transitional.dtd">

The following code fragment is from the loose.dtd at http://www.w3.org/TR/REC-
html40/loose.dtd, and shows how the well-known attributes, including id and class attributes
that are heavily leveraged by XMLC, are defined for HTML documents:

<!ENTITY % coreattrs
 "id ID #IMPLIED — document-wide unique id —
 class CDATA #IMPLIED — space-separated list of
classes —
 style %StyleSheet; #IMPLIED — associated style info —
 title %Text; #IMPLIED — advisory title —"
 >

However, even more typically, there is no need for a DTD because the HTML parser already has
the DTD knowledge built-in.

HTML is further distinguished from XML by its built-in support for presentation elements, such
as input, forms, check boxes, buttons, and text fields. Unlike XML, HTML was clearly defined to
support a particular style of user interface, primarily driven by the notion of forms-based data
entry. This approach is very familiar to IBM 3270 mainframe users.

id and class Attributes

id and class attributes are defined by default for HTML documents. As defined by the id data
definition, an id attribute's value must be unique within an HTML document. An id can be used
for a stylesheet selector, a target anchor for hypertext links (when used in conjunction with the
name attribute), a reference for accessing an element from a JavaScript, or for general purpose
needs, as in the case of XMLC.

A class attribute, on the other hand, is used to associate elements with each other, by virtue of
belonging to a common class. Therefore, the class attribute's value does not have to be unique
within the document.

The following HTML fragment groups a list of booths as belonging to one of two classes:

http://www.w3.org/tr/rec-html40/loose.dtd
http://www.w3.org/tr/rec-html40/loose.dtd

 123

<LI class="unassigned">Booth #3
<LI class="unassigned">Booth #4
<LI class="assigned">Booth #5

An earlier HTML <style> element, located in the head of the HTML page, defines
"unassigned" as a stylesheet selector. The result is that, for instance, the content is displayed
with a font color of red, which has been chosen to visually represent unassigned booths. An
example of how XMLC can take advantage of Style and class attributes is presented later in
the book.

Note that because we do not control the HTML DTD, it is not possible, for instance, to specify the
allowable values for the class attribute.

class attributes can be used for general purpose needs. They are commonly used to leverage the
XMLC command line option -delete-class as an approach to removing mocked-up content
from an HTML page. "xmlc -delete-class deleteMe" would do the trick on the
following example, removing the entire element during compilation:

<LI class="vendor deleteMe">ACME Corporation

In this example, you can see that more than one class name can be identified, delimited by space
characters. The class value "vendor" might have been used to reference a stylesheet selector
during the design process and is no longer needed as mocked-up information.

DIV and SPAN Elements

HTML's DIV and SPAN elements add greater document structure and isolation to sub-HTML
markup, a feature that designers and developers can use XMLC to take full advantage of. SPAN is
used as an in-line element to isolate strings or characters within the content of other elements,
such as a <P> element.

In this example, the class attribute value "properName" is probably a reference to a stylesheet
selector:

<P>Welcome to the <SPAN id="confSponsor"
class="properName">Enhydra conference.

The SPAN tag is being used to isolate the stylesheet's influence to the in-line content, currently
represented by the mocked-up data Enhydra. The presence of the id attribute means that the
actual text content within the SPAN element may be altered by an XMLC-generated accessor
method, in which case the new content will also be affected by the stylesheet selector.

DIV, on the other hand, accomplishes a similar purpose at the "block" level. Like SPAN, DIV can
be used with id and class attributes to identify the block of markup and content in the DIV
container, such as a set of buttons within a form, or collection of other related elements. This gives
HTML designers the capability to control the layout of large or small blocks of content with
respect to one another.

Entities and Entity References

HTML supports entities and entity references, described earlier in the XML section, with the
major distinction that

• what entities exist are pre-defined for you; and

 124

• you may not define additional entities with the HTML document.

An example of an entity is the non-blocking space character. HTML handles white space in a
sometimes frustrating manner. For example, HTML will ignore all white space between a <P>
element and the first real character. If you want to insert spaces before that character, the route you
must often choose is to insert non-locking space characters. The non-blocking space character is
inserted with the entity reference , the same format used by XML. How you accomplish
inserting non-blocking space characters through the DOM interface is discussed later.

Selected DOM Topics

In XMLC programming, the DOM is the key to the separation of logic and markup. If you
understand the strategy behind the DOM, then you'll spend less time trying to work around it;
which appears to be a natural tendency, especially for those who are used to embedding markup in
Java.

Rather than repeat the DOM discussion from Chapter 2, we're going to focus on some key
concepts around the DOM, including the role of the Node interface and how HTML entities are
handled.

DOM Structure

The DOM is an application programming interface for both HTML and XML documents. It
supports all the pre-defined interfaces necessary to represent a complete markup-based document.
It was designed with an object-oriented programming language in mind. The DOM is an API
described by a set of interfaces defined in the package org.w3c.dom. The HTML extension of
these interfaces is defined in the package org.w3c.dom.html.

The DOM instance is a object representation of the document. It doesn't contain any markup. It
contains data, represented as Java strings, stored in an object hierarchy that has the semantic
information that was captured from the markup document.

How you walk through the DOM, or write out the DOM to a client is not defined by the DOM.
Instead, a parser such as Xerces from apache.org, originally contributed by IBM, defines it.
Parsers are programs that can unmarshall XML data from a file into memory, as represented by a
DOM structure. From there, the application's logic can work with the DOM. Xerces is one of three
parsers supported by the XMLC compiler. The Swing parser (from Sun's Java Foundation Class)
and JTidy (a project from SourceForge at http://sourceforge.net/projects/jtidy) are the others. We'll
explore how XMLC takes advantage of their unique features later.

DOM Document

The DOM is a hierarchy of Node objects. Node objects are the representatives of markup entities
(document declarations, elements, text, attributes, and so on), also referred to as "node types,"
found in a markup document. There are additional node types, such as the DocumentFragment,
which are a handy and lightweight way to create a collection of new DOM tree elements, such as
new rows in a table, and add them back to the tree in one simple operation.

The following code is generated by the xmlc compiler in order to build a DOM class. It reflects
XMLC's approach to building a DOM, focusing first on initializing the document prolog,
including encoding and calling another internal method, buildSubDocument(), to assemble
the rest of the DOM-building code:

http://apache.org/
http://sourceforge.net/projects/jtidy

 125

public void buildDocument() {
 org.apache.html.dom.HTMLDocumentImpl document =
 (HTMLDocumentImpl)fDOMFactory.createDocument(null, "HTML",
null);
 setDocument(document,"text/html", "UTF-8");

 buildSubDocument(document, document);
 }

We will discuss in greater detail the Java code generated by XMLC compilation later in this
chapter.

The Node

The Node interface is the heart of the DOM API. Everything about the DOM API is there to
manage the Node. Nodes represent the objects of markup languages, including elements,
attributes and entities. Reminding yourself that they are the container of markup objects will make
DOM and XMLC programming much easier to understand. Although XMLC greatly simplifies
the task of traversing the DOM template to access targeted areas, you will likely rely on the DOM
API to actually modify and enhance the template.

Table 6.1 lists all the legal node types. Some can have children and others, representing leaf nodes
in a DOM structure, cannot.

Table 6.1. Node Types and Their (Possible) Children
Node Type Possible Children
Document Element (one only), PI, Comment, DocumentType (one only)
DocumentFragment Element, PI, Comment, Text, CDATASection, EntityReference
DocumentType None
EntityReference Element, PI, Comment, Text, CDATASection, EntityReference
Element Element, Text, Comment, PI, CDATASection, EntityReference
Attr Text, EntityReference
PI None
Comment None
Text None
CDATASection None
Entity Element, PI, Comment, Text, CDATASection, EntityReference
Notation None

Each of these node types is represented by extensions of the Node interface. Obviously, these
extensions are important because they reflect the distinguishing capabilities or aspects of what
they represent in a markup language and how they are represented in a DOM tree. Text, for
instance, cannot contain children. The Text interface inherits appendChild() from the Node
interface. As an implementation of the Text interface, appendChild()'s behavior is modified
to generate an exception if the program attempts to append a child. In contrast, appendChild(),
as inherited by the Entity interface, would not generate an exception.

There are other interesting Node sub-interfaces not listed in Table 6.1 that act as container objects
that you may or may not use at some point. Each of these interfaces offers an alternative to the
standard tree view of a document. NodeList handles ordered lists of Nodes. Access to DOM
nodes through NodeList gives the developer a linear view of the document elements.
NamedNodeMap handles unordered nodes indexed by their name, making it ideal to contain a list

 126

of attributes and their associated values. These data structures are interesting, but not normally
used for XMLC development.

Attr is another interesting Node sub-interface because it is often used by XMLC development.
As Table 6.1 indicates, the Attr node can contain Text and EntityReference node types.
This maps to the following example:

<booth company="Booth belongs to &companyName;"/>

The attribute company contains both an entity reference, companyName, and a string.

During the XMLC compilation process, entity references inside attribute values receive special
pre-processing treatment. The replacement of the entity reference with the stated value of the
entity takes place before the resultant text string is appended to the Attr node. The implication
here is that no attributes will contain entity references. Entity references located in non-attribute
text nodes are preserved.

Attr is also curious relative to other node types. You might expect the DOM to view it as a child
of the Element node. Instead, it is a child of the Document node. This makes it possible for a set
of attributes, such as class to be defined, then assigned for association to different elements as
described in a DTD.

Note

The question is often asked why JDOM is not incorporated into Enhydra XMLC. JDOM is an
alternative DOM that has the goal of being easier to use than the W3C DOM by virtue of its
Java focus (as compared to the language-independent DOM). Some investigation was done
into what would be required to support JDOM in XMLC.

Although JDOM is indeed easier to use, it doesn't necessarily raise the level of programming
within the XMLC environment. You are still dealing with objects at the same conceptual level
(elements, text, documents, etc).

What's really needed by those looking for a higher-level programming model are projects
such as Enhydra's Barracuda, which abstracts the implementation details of DOM
programming.

Node Versus Document

Comparing the Node and Document interfaces reveals a lot about the relationship between the
DOM and the document. The Node interface deals in the world of generic DOM building and
manipulation. Its interface methods include appendChild(), cloneNode(),
getFirstChild(), getNodeType(), getParentNode(), and so on.

Document, on the other hand, is the interface that extends Node with knowledge of the XML or
HTML domain. For example, createElement() and createAttribute() generate
markup-specific objects. These methods return the objects that are specific to the Node sub-
interface that they operate upon. getDoctype() associates the document with a DTD.
Document is also responsible for all the factory methods that implement each Node sub-interface.

CDATA Section

In general, there are a couple of reasons why you might choose to use CDATA (Character Data)
sections in your document:

 127

• To get markup characters inside the document without using entity references; and
• to prevent the formatting of markup.

All too often, the CDATA section is treated as an unnecessary ripchord for inserting markup into a
HTML (or XML) document. The DOM guarantees that its output will always be in the form of a
well-formed document. The use of CDATA sections to pass markup through unprocessed can
prevent this.

Later on, we'll review some of the situations when it is necessary to pass unprocessed markup
directly from, for instance, a database to the client. CDATA sections are used to exempt blocks of
text containing characters that, left unprotected, would be regarded and evaluated as markup. The
CDATA section informs the parser that its contents contain no markup language, and should
therefore be passed through as regular text.

CDATA sections are useful when <PRE> is not an option for identifying a body of unprocessed
markup. The following example shows how CDATA can be used to protect in-line markup for
parsing:

<P>The code looks like:
 <![CDATA[if (x<y) { echo "hello
world!"}]]>

Too often, however, DOM programmers use CDATA sections as an easy way to address the
frustrations of HTML development. The problem with using CDATA sections to smuggle in
markup past the DOM's strongly-typed object representation of the document is that the DOM can
no longer guarantee that a well-formed document will result.

How DOM Handles HTML Entities

The HTML implementation of the DOM interface greatly reduces the dependency on CDATA
sections to crowbar strings of markup into the DOM result tree. As a true template environment
that maintains complete separation of markup from programming logic, sending bits of "clear
markup" from your Java code should be avoided.

How do you actually smuggle an element of HTML or XML markup past an HTML/XML parser
and into the DOM's Text node?

Note

"There is no 'nice' way to put HTML markup into the DOM, because it is not what the DOM
is designed to do. Specifically, the DOM contains an object representation of the data
contained in an HTML or XML document, not the markup itself."—Mark Diekhans, XMLC
inventor

The language-specific DOM implementations found in XMLC support pre-defined entities in their
native Unicode format. HTML character entities all represent Unicode characters. These character
entity references are all defined in Chapter 24 of the HTML 4 specification.

An example of such an entity is nbsp for HTML. More examples are listed in Table 6.2.

Definitions of HTML character entities and conversions between Unicode characters and HTML
character entities are addressed in the following class:

org.enhydra.xml.io.HTMLEntities

Table 6.2. Selected HTML Entities

 128

Field (static character) Description
beta Unicode character for entity beta (?)
Amp Unicode character for entity amp (&)
cent Unicode character for entity cent (¢)
acirc Unicode character for entity acirc (â)
copy Unicode character for entity copy (©)
frac12 Unicode character for entity frac12 (_)
hearts Unicode character for entity hearts (?)
Gt Unicode character for entity gt (>)
nbsp Unicode character for entity nbsp ()

If you take an HTML file with the line

<P>This book is legal goes here

then your presentation object might contain the following code fragment to modify the sample
template:

// Load the HTML template created by the XMLC compiler
book = (bookHTML)comms.xmlcFactory.create(bookHTML.class);
book.setTextCopyRightMsg(org.enhydra.xml.io.HTMLEntities.copy + "SAMS
Publishing, Inc.");
comms.response.writeDOM(book);

The result is

© SAMS Publishing, Inc

Note that at no point did we do something like use CDATA to slip in a © entity reference.
The DOM takes care of that for us by representing them through the DOM API.

Now, suppose you want to insert one or more instances of a markup character inside some content:

Warning! Read the following excerpt >>>

The HTML templates for this might look like

<P>Warning! Action goes here

You can do either of the following. One route is to embed the CDATA declaration directly in your
string:

 welcome = (WelcomeHTML)comms.xmlcFactory.create(WelcomeHTML.class);
page.setTextWarning("Read the following information<![CDATA[>>>]]>");

Another approach is to use the DOM Document interface method createCDATASection. Or,
you can use the DOM's HTML sub-interface to assist you with achieving the same result:

char gt = org.enhydra.xml.io.HTMLEntities.gt;
page.setTextWarning("Read the following information" + gt + gt + gt);

Caution

 129

createCDATASection was created to address the requirement for delivering large blocks
of markup from a database store. Although you are free to use it as you wish, be aware that
you are bypassing one of the best values of DOM programming, namely the guarantee of a
well-formed result tree.

The DOM API is key to XMLC's capability to support a clean interface between developer and
designer. There is no markup language expected between XMLC and DOM. Instead, it's left up to
the DOM to generate the correct markup language. It takes awhile for developers to understand
that significance. On the mailing list, you'll often see developers instinctively revert to hardcoding
an in their code, rather than use the HTML DOM's representation.

XMLC Features and Functions

Although XMLC stands for "XML Compiler," there are really two completely distinct, yet linked,
personalities to XMLC. One, of course, is the development time compiler. The other is the XMLC
runtime environment. The runtime environment provides the developer with XMLC methods that,
for example, make it possible to load the template DOM class, quickly access portions of the
template, and control the output of the reworked DOM template.

These two sides of XMLC are linked by the runtime environment's dependency on key features of
the XMLC compiler. XMLC is an intelligent, highly configurable compiler. It is more than just a
bit of code that loads the appropriate markup parser. As we'll see, some of XMLC's features are
the "hooks" inserted into the DOM template. Other features deal with how the resulting DOM
class is structured.

The DOM gives XMLC more advantages than preserving clean separation between markup and
Java. These advantages include the capability to insert accessor methods at key locations, and to
present the developer with a page or "template object" that insulates the developer from the
markup language the DOM contains.

XMLC's features and functions range from the simple to the profound:

• XMLC uses id/class attributes to auto-generate DOM accessor methods.
• XMLC extends the Xerces DOM for performance, leveraging the pre-knowledge of

identified id and class attributes encountered during the DOM template's construction.
• XMLC supports type-specific DOM sub-interfaces and their implementations for major

XML languages.
• XMLC can discard mocked-up data at compile-time.
• XMLC uses a specialized parser for assisting the developer with malformed HTML.
• XMLC can split compiled DOM templates into interfaces and implementations for

runtime implementation selection.
• XMLC can support abstract classes that contain the method signatures generated by the

XMLC compilation.
• Without programming intervention or application stoppage, XMLC can dynamically

compile any newly updated markup page into a DOM class template during runtime.
• XMLC is highly portable to any modern servlet environment, Enhydra or otherwise.
• XMLC has extensive options for debugging and examining the generated DOM and

output at any time in the process, including runtime.

Let's examine some of the details of these features as organized by their place in the Web
application's lifecycle.

At Compile-Time

 130

XMLC leverages id attributes to identify targeted areas of a markup page for dynamic
manipulation by Java logic. This approach eliminates any need to introduce new elements (tags).
JSP, of course, introduces JSP-specific tags as well as custom tags (Taglibs). We've already
covered the many advantages of XMLC's strategy relative to other methodologies in Chapter 2.

At first glance, it might appear that you must learn the DOM API to work with XMLC. XMLC,
however, has been developed to reduce the reliance on the DOM API without restricting those
who are comfortable with DOM API programming.

The XMLC compiler generates Java methods to free you from significant DOM tree traversal and
manipulation coding. These methods give direct access to elements and their textual content.

The compiler generates two forms of accessor methods. Each method satisfies different needs:

• setText<AttributeValue>
• getElement<AttributeValue>

<AttributeValue> is the value defined by the designer and/or developer, which is then
assigned to the id. The attribute value must be a legal Java identifier.

Text-Setting Accessor Methods

setText<AttributeValue> methods let you change textual content without a single call to
DOM-traversing methods. It is a direct-access form of DOM manipulation.

 is an HTML tag discussed earlier in this chapter. Earlier versions of XMLC directly
linked the creation of the setText<AttributeValue> accessor method to the id's insertion in
a SPAN tag.

Since the introduction of Enhydra XMLC 2.0, the algorithm for creating
setText<AttributeValue> methods has disassociated its generation on the presence of a
SPAN tag.

Any markup element that has

• an id attribute that can be converted to a Java identifier,
• a content model of PCDATA,
• and a text child in the template,

will generate a setText<AttributeValue>() method as a result of the XMLC compilation
process. Examples of markup that will generate setText style methods include the following:

<P>Welcome to Chicago.</P>
<P id=Greeting>Welcome to Chicago</P>
<LI id=CustomerName>John Doe
<BoothIndex id=boothNumber>857</BoothIndex>

The generated methods, respectively, are: setTextPlace(), setTextGreeting(),
setTextCustomerName() and setTextBoothNumber().

Element-Retrieving Accessor Methods

getElement<AttributeValue> methods, on the other hand, are useful for getting access to
areas, or templates, of the larger DOM template. After the desired node is retrieved by this call,

 131

you can then use DOM calls for cloning, appending or deleting portions of the template. We will
cover strategies for performing these type of runtime template-building activities in Chapter 8,
"HTML Presentations."

<TABLE>
<TR id=customerRow>
<TD>John Doe</TD>
<TR>

The preceding HTML fragment would generate the accessor method
getElementCustomerRow. If customerDoc is the variable containing the generated DOM
class template, then the following code fragment

HTMLTableRowElement templateRow = customerDoc.getElementCustomerRow();

retrieves and stores the HTML table's row node; the node can now be cloned and turned into a
template for generating new rows like a rubber stamp. Note how the first character of the attribute
value is always converted to uppercase.

Accessor Methods for XML Documents

From a previous discussion, you know that HTML id and class attributes are defined for you,
either by an HTML DTD or by built-in knowledge found in popular Web browser parsers. This is
not necessarily the case with XML documents. Fortunately, it is a simple matter of creating the
DTD declaration that will cause XMLC to generate the same accessor methods generated from
HTML documents.

The DTD for declaring id and class attributes for XML documents is a simple one:

<!ELEMENT Vendor (#PCDATA)>
<!ATTLIST Vendor id ID #IMPLIED>
<!ATTLIST Vendor class CDATA #IMPLIED

XMLC generates accessors for elements containing attributes declared as type ID in the DTD.
This is not the same as attributes named id. By convention, attributes of type ID are named id,
although there is no requirement for this.

According to DTD syntax, an ID is a special type of attribute that serves as a unique qualifier for
an element. In other words, there cannot be two or more IDs with the same name.

A Stable of Parsers for Flexibility

Command line switches and a selection of parsers give you the ability to control the XMLC
compiler as desired.

It's easy to understand why there might be a selection of command line options. But the parser
situation reflects our earlier discussion about HTML in an XML world. Enhydra XMLC uses two
parsers for HTML parsing, and "one and a half" for XML parsing. Without a parser
implementation to call upon, there is no object, because the DOM is just a specification that
requires an implementation.

There are two general reasons for multiple parser support in XMLC:

• Input markup document type
• Performance characteristics

 132

XMLC cannot tolerate malformed HTML during compilation. And there's a lot of malformed
HTML out there, much of which is still constructed by hand. The reason a malformed document is
a problem is that it's simply impossible to build a valid DOM tree.

So how does XMLC handle all that broken HTML? The chosen solution is the Java port of HTML
Tidy. HTML Tidy parses and attempts to correct the source HTML. It doesn't always result in the
HTML that renders the way the user intended, but it does give the designer/developer good
information on how to fix their HTML.

HTML Tidy is an excellent, informative parser for malformed HTML and therefore owns the
default position. The Java Foundation Class Swing parser is also included, but is primarily
included for legacy support (when Swing was the only HTML parser included in earlier versions
of XMLC).

But even when dealing with well-formed XML documents, there are still reasons for having a
choice of parsers. Those reasons are performance and size of the memory footprint. The Xerces
parser is used for parsing XML documents. In order to improve performance, this parser has been
extended to take advantage of the pre-knowledge advantages of XMLC compilation to represent
what Mark Diekhans calls the "LazyDOM." There are situations when the LazyDOM is not the
best strategy for particular XML or HTML documents. For highly dynamic pages, it might be best
to stick with standard Xerces parsing. We will discuss the LazyDOM strategy in the next few
sections.

At Runtime

The XMLC runtime environment supports a collection of classes for creating dynamic
presentations with the maximum amount of flexibility for implementing the best possible
application architectures. This collection represents:

• XMLC factory and utility methods for debugging, DOM manipulation, and output
formatting.

• Selected DOM methods from which to choose.
• Implementations of "type-specific" HTML and XML language sub-DOMs (for example,

VoiceXML, XHTML).

During the running of the application, it is the responsibility of the application's code to load the
template object. The application's code then uses the XMLC accessor methods and DOM API
methods to locate, interrogate, and rework the template object. When all the modifications are
complete, XMLC methods are used to take the updated DOM representation of the page, format it
(including setting its encoding), and stream back the markup contents.

The XMLC-related classes and their supporting libraries are all contained within the Java class
libraries listed in Table 6.3.

Table 6.3. XMLC Packages
javax.xml.parsers org.enhydra.xml.xmlc.html
org.apache.xerces.framework org.enhydra.xml.xmlc.reloading
org.apache.xerces.parsers org.enhydra.xml.xmlc.servlet
org.apache.xml.serialize org.w3c.dom
org.enhydra.wireless.wml org.w3c.dom.events
org.enhydra.wireless.wml.dom org.w3c.dom.html
org.enhydra.xml.dom org.w3c.dom.range
org.enhydra.xml.io org.w3c.dom.traversal

 133

org.enhydra.xml.lazydom org.xml.sax
org.enhydra.xml.xmlc org.xml.sax.ext
org.enhydra.xml.xmlc.dom org.xml.sax.helpers

Runtime Objects

A number of classes are part of the runtime XMLC environment and are worth calling out.
Throughout the remainder of this book, the following classes will appear repeatedly:

XMLObject: This is the interface for all XMLC compiler-generated XML objects. Its methods
include toDocument() and buildDocument(), which are discussed later in this chapter,
when we address how XMLC constructs the Java source that builds the DOM class template.

XMLObjectImpl: This class implements the XMLObject interface, as well as Document and
DocumentInfo. Document is an extension of the Node interface. Node is the signature of the
building block of the DOM, and is the interface from which all element interfaces are derived (for
example, HTMLSelectElement, VoiceXMLBlockElement, and WMLGoElement).

HTMLObject: This interface is derived from both XMLObject and HTMLDocument. Together,
these interfaces give HTMLObject its capability to represent an HTML page.

DOMFormatter: toDocument is a method for generating markup from a completed DOM. It is,
however, limited in its capability to support features such as URL-encoding (for avoiding session-
based cookies). DOMFormatter and the outputoptions class give finer control over the
formatting issues of converting the XMLObject (DOM) to a string of HTML/XML. writeDOM()
serves a similar role (and is the default method generated by AppWizard). See Chapter 8 for more
on this class.

XMLCFactory: This is the interface for factories generating instances of XMLC classes. It
generates an XMLObject from a DOM class. When implemented by XMLCReloadingFactory,
the application can take advantage of XMLC's capability to add new templates without
recompiling the entire application.

XMLCContext: This class delivers XMLC support to the standard servlet environment, including
XMLC features such as dynamic reloading, debugging, logging, and URL encoding. This class is
discussed at length in Chapter 10, "Servlet Web Applications."

Dynamic Loading and Auto-Recompilation

A relatively recent feature of XMLC is the addition of the DOM factory method. By default, the
XMLC compiler generates a single, complete Java class representation of the DOM template class.
The XMLC compiler can also be instructed to generate two classes:

• A class interface definition
• An implementation of that interface (and the DOM class template)

To support this configuration, XMLC 2.0 has introduced the notion of a XMLC factory method
used to create a DOM class from the loading of these XMLC-generated classes.

The result is that old style XMLC programming went from statically binding the DOM class to the
application, as seen here:

welcome = new WelcomeWML();

 134

to the loosely coupled approach of using a factory method for loading DOM classes and their
implementations, as seen here:

welcome = (WelcomeWML)comms.xmlcFactory.create(WelcomeWML.class);

Support for dynamic loading gives the application designer a number of options, some of which
include giving the application, during runtime, the capability to:

• Automatically compile, then load newly reworked markup pages.
• Automatically load class implementations that were recently generated by an invoked

XMLC command.
• Make runtime determinations based on any number of conditions to load a particular class

implementation.

We will discuss the details of how to use these features in Chapter 7, "The xmlc Command," as
well as in subsequent chapters where we will show how generating interfaces and
implementations of those interfaces can be used to support an ASP application, using ShowFloor
as the basis for our examples.

Strong Document-Specific Type Safety

Enhydra XMLC provides additional programming value by supporting DOM implementations of
particular DOM sub-interfaces, such as HTML and WML. To illustrate what this value actually is,
take a look at this bit of markup:

<OL id="checkList" start="100">

This is an HTML-ordered list. The start attribute indicates that the numbering should start at
100, like ordering a new checkbook and indicating what the first check number should be.
Without use of the OL-specific HTMLOListElement DOM sub-interface, you would use a
generic DOM method such as the following to change the start number to 1000:

Element orderedList = myPage.getElementCheckList();
orderedList.getAttributeNode("start").setValue("1000");

As you can see, we were still able to take advantage of an id attribute and XMLC's generation of
a convenient accessor method, getElementCheckList(). Now, let's apply the
HTMLOListElement method to the same task:

Element orderedList = myPage.getElementCheckList();
orderedList.setStart(1000);

As you can see, the HTMLOListElement implementation offers a method for the specific
purpose of updating the starting number. This eliminates the possibility of, for example,
misspelling the start attribute.

Note

To date, Lutris has not made the DOM implementations of VoiceXML, cHTML or XHTML
available to Enhydra.org. No indication has been given if or when this may occur, although
nothing prevents an open source contribution from other parties or individuals.

http://enhydra.org/

 135

Although a subclass DOM implementation of a specific XML language supports solid
development, it is not a showstopper. In fact, it's not difficult at all, because, as we demonstrated
earlier, you can still take advantage of using id attributes to get XMLC to generate accessor
methods.

The flip side is that you are more exposed to the more generic APIs of the DOM API, losing the
advantages of type-safe manipulation. Later in the book, we will show how you can use XMLC to
build an SVG (Scalar Vector Graphic) presentation using this new XML language as defined by
the W3C.

Writing Out the DOM

Your work might not be over after you've completed the reworking of the DOM template. There
may still be problems that remain before streaming the output of the DOM back to the client as
converted to HTML or XML. The XMLC runtime environment supports document formatting
capabilities with methods and classes such as the following:

• writeDOM
• DOMFormatter
• outputoptions

For most applications, a simple call to writeDOM() will take care of converting the DOM to
markup. But if, for instance, you want to reset the MIME type or encoding, then control is
available using some combination of these classes. These features will be covered in subsequent
chapters.

Working with Templates

In XMLC programming, the term template applies to both the HTML or XML markup document
as well as the DOM class generated by the xmlc command. Template is a truly meaningful
description, given that XMLC encourages a design process that starts with a solid approximation
of how the end result will appear after the DOM class template has been generated during runtime
execution.

With the help of some unique XMLC features, the designer can populate the initial template with
mocked-up content in portions of the template that will be updated dynamically. There are many
advantages to viewing the page as a template that can be made to look "real" with mocked-up data.

Template node is another term used to refer to a portion of the document, such as a block of check
boxes, their labels, and the settings to be updated based on queries to a SQL database.

The fact is that the entire document can viewed as a template. Portions of it are static (that is, not
targeted for dynamic replacement or modification). The remaining portions are dynamic,
identified by the placing of id attributes to indicate their dynamic status to the XMLC compiler.

Templates can be used for more than just the internal organization of the page. They can also be
used to represent multiple instances of a page on a per-language, per-device, or XML language
basis. A French-Canadian Admin HTML document can serve as a template that is unique from the
German version of the same presentation. As we'll see, XMLC utilities make it easy to load the
appropriate template depending on one of many factors, including which language or device is
involved.

 136

How XMLC Constructs a DOM Class

When XMLC compiles a markup page into a DOM class or template, it generates an intermediate
Java source file that contains the logic that is compiled into the Java class. The xmlc command
option -keep instructs xmlc to leave the Java source file behind.

HTML Tidy parses the input markup file. XMLC then generates the DOM-building logic, using
either the Xerces or the LazyDOM APIs. LazyDOM is the default parser. When the compiled
DOM class is loaded during runtime execution, the Xerces or LazyDOM builds the DOM in
memory.

Let's take a look at an extremely simple HTML source file and portions of the DOM-building Java
source code assembled by the xmlc command:

<html>
<body>
<p>Hello World
</body>
</html>

You'll invoke the xmlc command , instructing it to "keep" the intermediate source file available
for your examination. And, because we're not worried too much about performance in this
example, you'll instruct xmlc to use the Xerces parser:

xmlc -keep -dom xerces hello.html

The generated Java source file is, by default, named hello.java. Inside there are a number of
interesting areas:

public hello extends
org.enhydra.xml.xmlc.html.HTMLObjectImpl
implements
org.enhydra.xml.xmlc.XMLObject,
org.enhydra.xml.xmlc.html.HTMLObject { ...

The DOM template is called hello. It is the extension of the abstract HTMLObjectImpl class,
which is the basis of all XMLC-generated HTML DOM classes. hello also implements the
XMLObject interface, representing the majority of the document-building methods, and the
HTMLObject interface that defines the HTML-specific toDocument method.

The buildDocument constructor method builds the document starting with the document prolog.
setDocument establishes the MIME type and the encoding. The rest of the work of building the
document and the accessor methods is left to buildSubDocument:

public void buildDocument() {
 org.apache.html.dom.HTMLDocumentImpl document =
(org.apache.html.dom.HTMLDocumentImpl)fDOMFactory.createDocument
(null, "HTML", null);
 setDocument(document,"text/html", "ISO-8859-1");
 buildSubDocument(document, document);^M
 }

 137

buildSubDocument is relatively straightforward, particularly because, for the sake of our
explanation, we chose to forgo the insertion of an id attribute. After examining the input
document, XMLC knows exactly how many Node and Element variables to declare and assign.
Note the impact of the HTML Tidy parser, having improved on the original HTML by adding the
HEAD element and TITLE elements.

This code uses the combination of createElement(), createTextNode() (referred to as
factory methods), and appendChild() to construct a DOM tree. The first two methods are
defined by the DOM's Document interface. Each is used depending on the HTML type that is
being processed, in this simple case, an element or a text node. The latter, appendChild(), is
defined by the Node interface:

private void buildSubDocument(org.w3c.dom.Document document,
 .w3c.dom.Node parentNode) {
 Node $node0, $node1, $node2, $node3, $node4;
 Element $elem0, $elem1, $elem2, $elem3;
 $elem1 = document.getDocumentElement();
 document.createElement("HTML");
 $elem2 = document.createElement("HEAD");
 $elem1.appendChild($elem2);
 $elem3 = document.createElement("TITLE");
 $elem2.appendChild($elem3);
 $elem2 = document.createElement("BODY");
 $elem1.appendChild($elem2);
 $elem3 = document.createElement("P");
 $elem2.appendChild($elem3);
 $node4 = document.createTextNode("Hello World");
 $elem3.appendChild($node4);
}

You now have a relatively complete example of a DOM template that will be instantiated at
runtime; although not all that interesting to someone wanting to take advantage of XMLC's more
interesting features.

Now let's introduce an id attribute that will cause XMLC to create accessor methods for accessing
the portion of the DOM tree that is due for dynamic treatment:

<html>
<body>
<p id="Greeting">Hello World
</body>
</html>

Impact of Inserting an id attribute

The impact of the id attribute on the generated DOM-building logic is the addition of new node-
creating statements, and two accessor method declarations.

First, in the buildSubDocument method, everything looks about the same as the previous
example, until you complete the creation of the "P" element node:

$elem3 = document.createElement("P");
$elem2.appendChild($elem3);
$attr3 = document.createAttribute("id");
$elem3.setAttributeNode($attr3);
$node4 = document.createTextNode("Greeting");
$attr3.appendChild($node4);

 138

$element_Greeting =
(org.apache.html.dom.HTMLParagraphElementImpl)$elem3;
$node4 = document.createTextNode("Hello World");
$elem3.appendChild($node4);

The detection of the id attribute by the parser generates a setAttributeNode call in lieu of
appendChild, because attributes are their own Nodes. The attr object is created and attached
to the "P" element's node with createAttribute(), representing an object-oriented view of
the id attribute. This is necessary because the DOM does not represent attributes as being directly
associated with element type Nodes.

There is also a rather out-of-place statement that casts a value of type
HTMLParagraphElementImpl:

$element_Greeting =
(org.apache.html.dom.HTMLParagraphElementImpl)$elem3;

The statements that follow are key to the creation of both accessor methods,
getElementGreeting and setTextGreeting:

public org.w3c.dom.html.HTMLParagraphElement getElementGreeting() {
 return $element_Greeting;}

and

public void setTextGreeting(String text) {
 doSetText($element_Greeting, text);
 }

These two methods appear painfully simple. getElementGreeting simply returns the
reference to the "P" element, revealing its location in the tree. This is the advantage of XMLC's
compiler approach—it leverages pre-knowledge of targeted areas of the DOM for manipulation.

setTextGreeting is greatly simplified by the helper method doSetText from the
XMLObjectImpl class.

Note

Although we discuss how XMLC generates accessor methods later in the chapter, you can see
how XMLC's compiler strategy creates an advantage based on pre-knowledge of the
constructed DOM tree. This pre-knowledge gives XMLC the opportunity to "know where the
action is" in the DOM tree. This knowledge is also used to create direct access methods, as
well as a technique for only instantiating the targeted portions of the DOM. This latter
technique is referred to as the LazyDOM.

Enhancing Performance with LazyDOM

DOM programming is often criticized for its relatively poor performance and large memory
footprint when compared to embedded template JSP programming. Representing the entire
document as a fully accessible tree has programming advantages, but also introduces potentially
significant overhead as a consequence.

 139

By default, the Xerces-generated DOM expands each node when it is loaded into memory. These
nodes represent costly events, particularly if only small portions of the template are to be updated
dynamically. The instantiation of nodes in static locations of the DOM makes little sense. But, it's
understandable why the DOM was implemented with this behavior, because the DOM itself would
not know which portions of its object representation were going to be manipulated.

Note

Performance can also be heavily influenced by design practices. Embedding one table into
another might be necessary for the relative positioning of HTML elements, but it can have a
significant affect on the performance of rendering markup inside the browser.

XMLC compilation, however, introduces a new element of DOM programming; namely, its
reliance on id attributes for identifying areas of dynamic content changes the rules.

With the introduction of XMLC 2.0 in late 2000, Lutris defined a subclass of the Xerces DOM,
ironically named LazyDOM. LazyDOM implements a strategy that takes advantage of XMLC's
pre-knowledge of which nodes will be accessed. Using the information provided by the id
attributes, LazyDOM will instantiate only those nodes that represent the elements under
consideration. Targeted nodes are accessed without expanding parents. All nodes are referenced
from an array, which keeps track of which node has been instantiated.

A Read-Only DOM Template for Reference

LazyDOM starts with a read-only DOM template with only the Document node instantiated. The
read-only DOM is used to systematically create the "instance DOM," which is the result tree that
is eventually returned to the client. The following rules and conditions describe how the
LazyDOM handles changes and traversals in a manner that minimizes instantiation, keeping the
memory footprint to a minimum:

• All other nodes remain unexpanded.
• A node can exist without an instantiated parent. This is made possible by the presence of

an XMLC id, and has a direct impact on the improved performance of the
getElement<AttributeValue> methods.

• Direct children of a node are expanded when any child is accessed.
• Attribute nodes are expanded only when the element it is associated with is expanded.
• When it's time to generate the markup from the DOM, special formatters traverse the

unexpanded portions of the template without forcing instantiation of the traveled portions.

When LazyDOM Isn't the Answer

There is a certain amount of overhead to supporting the LazyDOM approach. As it turns out, if a
page is highly dynamic, the overhead increases to the point where there is no longer a
performance advantage. In this case, it is best to override XMLC's default usage of LazyDOM in
order to use the standard Xerces DOM parser.

In the next chapter, you'll see how to measure the performance of each approach, in order to
appraise which parser implementation will best serve your performance goals.

Summary

 140

Our conceptual discussions of DOMs, DTDs, XML, and HTML are now finished. The goal of this
chapter was to set the stage for the how-to remainder of this book by setting a conceptual picture
that will enable you to take full advantage of XMLC and the strategies to make the most of
XMLC's capabilities.

The magic of XMLC, besides taking advantage of the DOM's approach to representing markup in
an object-oriented manner, is its compiler approach to making DOMs more self-aware of the
intended use of their contents for dynamic manipulation. This affects everything from easing the
chore of XMLC development to improving general DOM modification performance by virtue of
the LazyDOM.

 141

Chapter 7. The xmlc Command
IN THIS CHAPTER

• Syntax and Formats
• The options.xmlc Format
• xmlc Command Options
• Some Runtime Options
• Auto-Recompilation and Auto-Class Loading
• Server-Side Includes
• XMLC Metadata
• Building with Enhydra make files
• Summary

This chapter introduces the brass tacks of using the XMLC compiler to build presentation
templates for Web applications, wired or otherwise. Having weathered the storm of conceptual
discussions, it's time to explore the capabilities and conventions of the xmlc command.

It should be clear by now that the XMLC compiler has been designed to be highly flexible with its
internal tools and classes in order to support the implications of compiling both well-behaved
XMLC and problematic HTML. It should not be too surprising that XMLC supports an equally
flexible set of compile-time options, including the formats in which they can take form.

XMLC supports traditional UNIX-style command line conventions as well as the new generation
of XML languages for configuration information. xmlc command options are designed to
influence everything from the choice of parser, the content of selected portions of the resultant
DOM class, and even the behavior of the Java compiler.

XMLC is a highly portable environment, including the compiler and runtime package. But, as an
Enhydra development tool, you'll see that there are extensions to the Enhydra make environment
that support additional ways to specify xmlc command options.

Syntax and Formats

The XMLC compiler, in the form of the xmlc command, is a highly configurable software
application. You have at least three methods for indicating the options you want xmlc to use. For
example, the runtime options for the xmlc command can be indicated on the command line, from
a make file variable or from an ASCII file. Even the options themselves can be expressed as a
traditional UNIX-style -opt command, or as elements and attributes in an XML metadata file.

We will now walk through the different forms that xmlc command options can take in preparation
for talking about the available options and their roles.

The xmlc command supports options, command line and otherwise, that can be used by the
developer to affect XMLC's behavior, including

• where to store generated DOM class templates,
• changes to selected URLs inside the markup,
• which parser or parsers to use, and
• which compile-time information to display.

 142

This is only a subset of what you can do with the xmlc command. As you'll see, the granularity of
the impact represented by different options can even be applied on a per-DOM element basis.

Command Line Options

Options to the xmlc command can be specified in a number of ways. Options can take the form of
traditional command line options, or as entries in an xmlc options file, <your name>.xmlc.

For instance, you'll see that the option -urlmapping can be used to rename URLs in the
generated file in order to update the file that a URL points to. The xmlc command takes the
following form:

xmlc [options] [optfile.xmlc ...] markupDocument

where markupDocument is the name of the HTML or XML file that you are processing, and
options and optfile.xmlc are entirely optional. As you've seen earlier, if you want to
process a markup file, keep the intermediate source file and have it list the names of the access
methods that are created. Then, using the Xerces DOM-building API, the following line will do
the trick:

xmlc -keep -methods -dom xerces hello.html

The options.xmlc Format

The options file, with the required extension .xmlc, is used to organize options when there are
too many to include on the command line, or they are shared by multiple files. Option files can
also be used in conjunction with options on the command line.

The typical contents of an options file might appear like the following:

-keep
-methods
-d ../../classes

The format for an options file is oriented as a series of one or more lines, processed line by line.
There is one option per line, beginning with a hyphen (-) character. Blank lines are ignored. Each
line is parsed into words based on white space delimiters. Comments begin with the hash (#)
character. In addition:

• Words may be quoted with single (') or double (") quotes to prevent breaking into words.
• The usual escape sequences such as \n and \t are recognized and converted to single

characters as a quoted string is parsed.

There is a well-stated order of precedence with respect to the ordering of option files and their
relationship to any options listed on the command line:

• First, option files are processed from left to right.
• Then all options specified on the command line are processed, left to right.

There is also a stated behavior with respect to the nature of the intended use of options themselves:

 143

• For options that have a single value, command line options override any specified in
options files.

• For options that can be specified multiple times, the values are accumulated from the
options files and the command line.

• If an option is repeated more than once and it was not designed to be specified multiple
times, the last option found will be used.

The Enhydra AppWizard creates an options.xmlc file as part of the generation of the stub
application environment. Its contents differ depending on the type of application it has been asked
to initialize. For superservlet (EAF) applications, the contents of options.xmlc are

-urlmapping "Welcome.html" "/RedirectPresentation.po"

For standard servlets, the contents are

-urlmapping "Welcome.html" "/redirect"

The function of -urlmapping will be explained later in this chapter.

There is a third format or methodology for specifying options to the xmlc command. XMLC
metadata is discussed later in the chapter, after you've had a chance to review most of the key
xmlc command options.

xmlc Command Options

I'm going to take a task-oriented walk through the more interesting xmlc commands. The full
listing of xmlc command options, in the conventional dashed getopts style, is located in
AppendixA, "XMLC Command Line Options." For illustrative purposes, I'll confine the examples
to the simple command line format.

Viewing the Intermediate Java DOM Source File

Using the -keep option, you can tell the XMLC compiler to preserve the Java source file that is
assembled by XMLC and used to generate the template class file. The source file and the class file
are given the same name.

Besides using this feature for debugging purposes, it's an excellent learning tool for understanding
how the XMLC compiler goes about its work, including how it codes up the accessor methods,
and how it builds the source code that will build the DOM tree after it is loaded by the application
at runtime.

By default, XMLC keeps the source file in the current working directory from which the xmlc
command is executed. To specify an alternative location, use -sourceout. For instance, the
following line will create the file /tmp/vendor.java:

xmlc -keep -sourceout /tmp vendor.html

Selecting Parsers

The XMLC compiler employs the services of a number of parsing engines for a number of reasons.
This is the strategy that XMLC uses to handle the problematic situation of malformed HTML

 144

documents. It's also how XMLC offers a choice of DOM-generating techniques that give the
developer some tools to minimize the DOM's runtime footprint and performance profile.

HTML Tidy Versus Swing

There are two HTML parsers supported by the xmlc command. The default parser is JTidy. JTidy
is a Java port of Dave Raggert's HTML Tidy, an HTML syntax checker and pretty printer. JTidy is
used as a tool for cleaning up malformed and faulty HTML. As JTidy encounters markup
problems during the processing of an input HTML document, it attempts to correct the markup,
simultaneously generating a warning, or perhaps giving up and generating a fatal error message.
Developers are encouraged to address the root cause of each warning message until they are no
longer generated by JTidy.

The Swing parser that's bundled by Sun with the Java Foundation Classes was the original XMLC
HTML parser. It is included for backward compatibility reasons. To use the Swing parser, you
must specify the command line option in order to override the default use of JTidy:

xmlc -parser swing <filename>.html

Neither parser is perfect, because it is not possible to account for all the possible variations on
HTML formatting that one can produce, especially given the fact that so much HTML is still
created by hand.

LazyDOM Versus Xerces

The XMLC compiler uses the Xerces parser from Apache to construct DOM-building Java logic
that will be executed by the application during runtime. LazyDOM, the default xmlc parser, is the
Enhydra innovation on top of Xerces that adds the notion of a read-only template to minimize the
per-node instantiation of the DOM template during runtime. It is a subclass extension of the
Xerces interface. Why offer a choice of XML parsers if LazyDOM is so much faster than Xerces?
As it turns out, this is not always the case. The results depend on your markup page's balance of
static versus dynamic content:

• If your page is highly dynamic, requiring extensive runtime DOM manipulation, Xerces
may be the preferred option.

• If your page is modestly to moderately dynamic, then LazyDOM might give your
application the best performance and DOM-manipulating characteristics.

It is up to the developer to determine which strategy is best suited for a particular page. This can
be determined by empirical evaluation using the XMLC_DOM_STATS message level described in
the section "How to Measure DOM Behavior."

Changing URLs During the Development Process

Another real-world feature of XMLC is the capability to automatically map one URL to another.
It's a commonplace situation that a page under development will point to other static, prototyped
markup pages. These pages will eventually be replaced by dynamic presentation objects as they
are implemented and refined. Until then, they are static pages as referenced from your working
page in order to convey the flow of the application until it is fully functional.

URL mapping gives the developer the capability to update URL references from the xmlc
command line, as opposed to reworking the URL references in the working page by hand. This
makes it possible to define an application-wide system for updating individual pages in a
systematic process.

 145

URL changes can be accomplished by a set of URL mapping options, namely -urlmapping, -
urlregexpmapping, and -urlsetting.

The option -urlmapping is the simplest of the three options, supporting simple mappings of
from and to URL names:

xmlc -urlmapping adminVendor.html admin.po?admin=vendor admin.html

The following example uses the option -urlregexpmapping to write a single expression that
performs all the necessary mappings. In this example, the filename's tail is simply replaced with
a .po suffix. -urlregexpmapping is implemented with the gnu.regexp package introduced
in Chapter 5, "Enhydra, Java/XML Application Server."

xmlc -urlregexpmapping "^(.*)\ \ .html$" "$1.po" vendor.html

There's also a way to change the value of the href attribute in an anchor tag using an id attribute.
-urlsetting updates the id-referenced href attribute with a new value. If the initial markup
in the fictitious markup file vendor.html looks like

<P>ACME Corp

then the following xmlc command line will update the URL reference:

xmlc -urlsetting vendorURL "http://www.acmecorp.com" vendor.html

What if you just want to update URLs without creating a DOM template? -docout is the xmlc
option that will save the updated markup to an ASCII file:

xmlc -urlsetting vendorURL "http://www.acmecorp.com" -docout
vendorFinal.html vendor.html

Discarding Mocked-Up Data

Giving designers the capability to leave mocked-up structure and content in a document is a
distinguishing feature of XMLC. Mocked-up content gives the document template a live feeling
that is highly useful to design reviewers.

There are a number of opportunities during development and runtime to remove mockup.
However, the easiest way with the least impact is to use the xmlc command option -discard in
combination with class attributes to identify unwanted mockup in the target document file.

Listing 7.1 contains an HTML table of vendors and vendor types. The first non-header row is the
row template. This template will be used like a rubber stamp by the presentation object to insert
new rows with real data. This is done by a cloning process described in Chapter 8, "HTML
Presentations" The rows that follow the first row represent mocked-up content, serving a
necessary role during the evaluation of the application's storyboards by the designer and,
undoubtedly, the customer. But this content is useless to the runtime application.

Listing 7.1 SFA/presentations/VendorList.html

<html>
<head>
<title>Untitled Document</title>

 146

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-
1">
<link rel="stylesheet" href="listings.css" type="text/css">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<table summary="Table of Vendors">
 <tr>
 <th>Vendor</th>
 <th>Vendor Type</th>
 </tr>
<tr id=VendorInfo>
 <td id=VendorName>ACME Corp</td>
 <td id=VendorType>App Servers</td>
</tr>
<tr class=DiscardMe>
 <td>Blue Corp</td>
 <td>Office Automation</td>
</tr>
<tr class=DiscardMe>
 <td>Green Corp</td>
 <td>Operating Systems</td>
</tr>
</table>
</body>
</html>

The designer has inserted the class attribute DiscardMe in the last two rows of mockup content.
There's no better time to remove these rows as when the DOM template object is being
constructed by the xmlc command. The way to instruct the xmlc command to delete this
information is as follows:

xmlc -delete-class "DiscardMe" vendorList.html

If you were to keep the intermediate Java source file, you'd see that all references to these rows are
missing. This is because they were ignored by XMLC during construction of the DOM-building
source code following the initial parsing of the input markup file.

Handling Multiple Classes

Classes can accept multiple values in the form of strings delimited with white spaces. If you need,
for example, to use the class attribute for specifying a stylesheet selector in order to render the
mocked-up document consistent in appearance, then you may do so simply by insuring that there's
a space that separates it from the other string, mockup:

<tr class="rowColor mockup">
 <td>Green Corp</td>
 <td>Operating Systems</td>
<tr>

The string value that you select to indicate that the row or any other mocked-up document object
will be discarded is up to you.

Why do we use the class attribute? Because class attributes can include values that are used
elsewhere. id attributes cannot be used, given their requirement for uniqueness within a markup
document.

Getting Progress Information and More from xmlc

 147

Everything you would ever want to know about the compilation of your HTML or XML file can
be gathered with the following invocation of xmlc:

xmlc -verbose -parseinfo -info -methods Listing01.html

Let's take a look at each of these options and their effect on the xmlc command.

What Methods Were Created by XMLC?

Use the -methods option to view the list of generated getElement<id value> and
setText<id value> methods. For the HTML page listed in Listing 7.1, this option returns the
following:

public org.W3C.dom.html.HTMLTableRowElement getElementVendorInfo();
public org.W3C.dom.html.HTMLTableCellElement getElementVendorName();
public void setTextVendorName(String text);
public org.W3C.dom.html.HTMLTableCellElement getElementVendorType();
public void setTextVendorType(String text);

Getting URL Info

The -info option will return additional compilation information regarding any URLs that are
encountered:

Element IDs:
 VendorInfo => org.W3C.dom.html.HTMLTableRowElement
 VendorName => org.W3C.dom.html.HTMLTableCellElement
 VendorType => org.W3C.dom.html.HTMLTableCellElement
Document URLs:
 ../../../../../SFA/presentation/listings.css

As you can see, markup objects are fully resolved, including element types and the URL.

Getting Parser Information

Using -parserInfo will give you a detailed, structured review of how the input markup
document was parsed. Tag labels are added for qualifying the nature of displayed node
information, such as RootNode, DocTypeTag, TextNode and so on. The command

xmlc -delete-class DiscardMe -parserInfo Listing01.html

generates the following listing:

0>RootNode: ''
4> DocTypeTag: 'html PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN"'
4> StartTag: html
8> StartTag: head
12> StartTag: title
16> TextNode: 'Listing 6.1 - Vendor Table' 12> StartTag:
meta content="text/
html; charset=iso-8859-1" http-equiv="Content-Type"
12> StartTag: link type="text/css"
href="../../../../../Lutris/ChiefEvangelism/book/
XMLCbasics/listings.css" rel="stylesheet"
8> StartTag: body text="#000000" bgcolor="#FFFFFF"

 148

12> StartTag: table summary="Table of Vendors"
16> StartTag: tr
20> StartTag: th
24> TextNode: 'Vendor'
20> StartTag: th
24> TextNode: 'Vendor Type'
16> StartTag: tr id="VendorInfo"
20> StartTag: td id="VendorName"
24> TextNode: 'ACME Corp'
20> StartTag: td id="VendorType"
24> TextNode: 'App Servers'
16> StartTag: tr class="DiscardMe"
20> StartTag: td
24> TextNode: 'Blue Corp'
20> StartTag: td
24> TextNode: 'Office Automation'
16> StartTag: tr class="DiscardMe"
20> StartTag: td
24> TextNode: 'Green Corp'
20> StartTag: td
24> TextNode: 'Operating Systems'

Watching the Progress of XMLC Compilation

Use -verbose to see the xmlc command's progress through parsing and code generation. During
parsing, it will echo the name of the DOM factory that was used for parsing the input
HTML/XML file:

>>> parsing Vendor.html
>>> using DOM Factory class:
org.enhydra.xml.xmlc.dom.lazydom.LazyHTMLDomFactory
>>> generating code
 creating class: Vendor.java
>>> compiling code
C:/jdk1.3//bin/javac Vendor.java
>>> completed

The LazyHTMLDomFactory refers to the class that constructs the DOM-building code using the
LazyDOM extensions to Xerces.

Dictating Generated Class Names

You can specify the qualified name of the DOM class file generated by XMLC with the -class
option. In lieu of using this option, XMLC takes the name of the input file and replaces the file's
tail with .class:

xmlc -class SFA.presentation.vendor Vendor.html

To specify a location outside the current working directory, you can specify the path to -d, which
is passed directly to the Java compiler.

-validate and XML

You will probably always want a validating DTD to support the markup document you are
processing with XMLC. There may be times, however, such as when you're offline and your DTD
references a W3C URL. -validate can be used to override the use of DTDs:

 149

xmlc -validate yes|no Vendor.html
xmlc -validate true|false Vendor.html

The default, of course, is to validate.

Note

-validate no is yet another example of the business requirements that went into the
design of Enhydra and other Enhydra technologies. Discussed earlier in Chapter 5, the
Enhydra Multiserver was designed to accept HTTP requests directly. This was done not to
compete with Apache, but instead to simplify the task of consultants performing development
on airplanes at 40,000 feet, so they wouldn't have to worry about an absentee network, or
having to turn their laptops into enterprise-ready servers.

Character Sets and Encoding

Sometimes it's easy to forget that computers don't see or understand characters. They see the
world and express results through numbers. They support the world's languages as data that is
encoded in order to represent every symbol, whether it's a "½," "-," or a "®." Encoding is a form
of Morse code, used to instruct the receiving operator, in our case a browser or an i-mode phone,
how to map the code (numbers) into human-readable characters.

You can control encoding from both the XMLC command line and your application. By default,
the DOM class template that is generated by XMLC lists ISO-8859-1 as the Western European
character encoding for Unix. UTF-8, an 8-bit Unicode encoding type, and Shift_JIS for
Japanese under Windows are other examples of encoding types. There's a nice list of the character
sets used by various countries at http://www.w3.org/international/o-charset-lang.html.

The xmlc option -html:encoding is available when you want to override the default encoding
that is used to build the DOM class template:

xmlc -html:encoding UTF-8 vendor.html

This example instructs the xmlc command to use UTF-8 encoding. This also becomes the default
encoding to use when streaming the application-finalized DOM class template markup back to the
client.

There's another opportunity at runtime to change the encoding in your final DOM document, using
the class Outputoptions and its method setEncoding(). Actually, Outputoptions is
used by the XMLC compiler as well, to format the initial DOM template.

The following XMLC-generated code was generated using the -html:encoding option with a
value of UTF-8, and can be viewed by running xmlc with the -keep option:

....
private static final org.enhydra.xml.io.OutputOptions
fPreFormatOutputOptions;
....
static {
 org.enhydra.xml.lazydom.html.LazyHTMLDocument doc =
(org.enhydra.xml.lazydom.html.LazyHTMLDocument)fDOMFactory.createDocu
ment (null, "HTML",
null);
 buildTemplateSubDocument(doc, doc);
 fTemplateDocument = new org.enhydra.xml.lazydom.TemplateDOM(doc);
 fPreFormatOutputOptions = new org.enhydra.xml.io.OutputOptions();

http://www.w3.org/international/o-charset-lang.html

 150

 fPreFormatOutputOptions.setFormat(org.enhydra.xml.io.OutputOptions.
FORMAT_AUTO);
 fPreFormatOutputOptions.setEncoding("UTF-8");
 fPreFormatOutputOptions.setPrettyPrinting(false);
 fPreFormatOutputOptions.setIndentSize(4);
 fPreFormatOutputOptions.setPreserveSpace(true);
 fPreFormatOutputOptions.setOmitXMLHeader(false);
 fPreFormatOutputOptions.setOmitDocType(false);
 fPreFormatOutputOptions.setOmitEncoding(false);
 fPreFormatOutputOptions.setDropHtmlSpanIds(true);
 fPreFormatOutputOptions.setOmitAttributeCharEntityRefs(true);
 fPreFormatOutputOptions.setPublicId(null);
 fPreFormatOutputOptions.setSystemId(null);
 fPreFormatOutputOptions.setMIMEType(null);
 fPreFormatOutputOptions.markReadOnly();
}

Some Runtime Options

Although most of this chapter has focused on compile-time options, there are some directly related
runtime topics, most of which we will cover in the remainder of the book.

Runtime DOM Debugging

XMLC provides the -dump option for dumping the contents of the presentation template. This
data is the result of compilation before the template has been loaded and manipulated by the
presentation logic. What if you want to look at the DOM after it's been loaded by the factory
method; or perhaps after the page's table template has been augmented with new rows?

The class DOMInfo has a number of fields for indicating which data to print; however, the
printTree() method is the primary feature of this class.

This method has special handling for LazyDOMs to prevent expansion and avoid affecting the
overall performance of the application. This can therefore be used as a nice debugging tool in a
production situation:

import java.io.*;
import org.enhydra.xml.dom.DOMInfo;

public class SpacemanPresentation implements HttpPresentation {
public void run(HttpPresentationComms comms)
throws HttpPresentationException, IOException {

VendorHTML vendor;
NodeList nodeList;
 ...
 PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out,
"UTF8"));
 DOMInfo.printTree("SVG Tree Details", vendor,
DOMInfo.PRINT_ATTR_DETAILS,out);
 comms.response.setContentType("image/wml");
 comms.response.writeDOM(vendor);
}

 151

If you want to print just the named node, then you can turn recursion off by passing the static
integer NO_RECURSION when invoking the DOMInfo constructor.

How to Measure DOM Behavior

The XMLC environment presents a number of options for dumping the contents and structure of
the DOM from the point of view of both content and element and other markup interfaces. These
options deal with both runtime as well as compile-time.

There is another view of the DOM that can help you watch and evaluate the runtime dynamic
behavior of the DOM footprint from a more statistical format.

Setting the following in the Multiserver configuration file (under the AppWizard-generated source
tree's /input directory) will generate some interesting runtime metrics regarding the state of the
DOM tree:

Server.LogToFile = XMLC_DOM_STATS

The Multiserver will route formatted statistics to ./output/multiserver.log unless you
specify another location for the log file.

Setting the XMLC_DOM_STATS message level will cause the XMLC library to generate output that
shows each node type, how many of each exists in the template, how many have been expanded,
and which ones have been created dynamically (for example, added row nodes to a table template).

How do you interpret this data? If a large percentage of the nodes are expanded after manipulation
of the DOM at runtime, then the LazyDOM might not be an advantage over the standard Xerces
DOM. The data might also reflect a costly DOM strategy, even though a small part of the DOM is
intended for dynamic updating.

Table 7.1 reflects the kinds of numbers generated by the simple loading of the DOM class
template representing the SFAdminLogin screen (Figure 2.1 and Listing 2.1) from Chapter 2,
"XMLC Development." As you might expect, there are only 2 of the 120 template nodes that have
been expanded because no traversals or modifications have taken place. In Chapter 9,
"Presentation Strategies," we'll show these numbers again after modification occurs.

Table 7.1. XMLC Metadata Directives
Node Type Template Expanded New
Element 32 1 0
Attr 40 0 0
Text 48 0 0
CDATASection 0 0 0
EntityReference 0 0 0
Entity 0 0 0
ProcessingInstruction 0 0 0
Comment 0 0 0
Document 0 1 0
DocumentType 0 0 0
DocumentFragment 0 0 0
Notation 0 0 0
Total 120 2 0

 152

Auto-Recompilation and Auto-Class Loading

Enhydra extends designer/developer independence one step further with support for automatic
recompilation and the loading of markup pages. Auto compilation answers the question: "If I just
want to make changes to the markup presentation, do I have to rebuild my presentation object?"

XMLC supports two options to enable applications to perform runtime auto-recompilation and
DOM class loading:

• Build a DOM from markup, then load the resulting DOM class template.
• Load a pre-made DOM class template.

Both of these options key off of a source document or DOM class timestamp that can be used by
the application to determine that auto-compilation and/or auto-loading should take place.

Note

The auto-recompilation feature is not nearly as interesting or dynamic as the application
architecture implications of using the xmlc command to generate a DOM class in the form of
an interface and an implementation.

As we'll discuss in Chapter 9, using the -generate both option will give you the
capability to employ factory methods that give you extreme flexibility in changing the
behavior of document presentations.

Reasons for Using Auto-Recompilation

Why would you use auto-recompilation, particularly given that there is some processing overhead
to support it?

• Your document's design is basically solid, but you want to make changes to the
orientation of the document's organization.

• You want to make changes to the static areas and content of your markup document.
• You want to make a change to a URL embedded in the document to point to a new site

(or away from a bad site).
• You want to cause the reloading of a server-side include (see later in this chapter) in order

to update an advertisement area, a header, or the navigation bar.
• You want non-programmers to be able to change the presentation without having to

involve you.

The ShowFloor application is a perfect example of why an application might take advantage of
auto-recompilation. If your application has been designed well, and all the advertised services
have been well received, then eliminating the need to tweak the application logic when there is a
new show-hosting customer should be possible.

Designers can make changes to the document as long as they leave the id attributes intact (in
relationship to their intended association). Or, a script can be executed that pre-compiles the
HTML, placing it in a known directory located within the application server environment.

xmlc Options for Auto-Compiling and Auto-Reloading

 153

To set the stage for enabling auto-compilation and/or auto-reloading, you must compile your
document with one of the following xmlc command options:

• xmlc -for-recomp— For auto-recompilation and auto-classloading.
• xmlc -generate both— For auto-classloading only.

Auto-Compilation with -for-recomp

The -for-recomp xmlc option supports auto-recompilation by generating three files, using the
vendor.html example shown in Figure 7.1:

• vendor.java is the Java Interface definition of the DOM class template. The naming
convention is <document>.java.

• vendorImpl.java is the implementation of the DOM class template. The naming
convention is <document>Impl.java.

• vendor.xmlc is the XMLC metadata file containing the necessary compile-time XMLC
options that are associated with the document and its compilation.

Figure 7.1. Output of the -for-recomp xmlc option.

Auto-Class Loading with -generate both

If the intended design scheme for your application is to automatically load new, pre-compiled
DOM classes, then you will use the -generate both option for XMLC.

Figure 7.2 shows that this option simply generates the Java interface and implementation files for
the document. No vendor.xmlc file is generated because there is nothing about XMLC

 154

metadata (that is, xmlc command options) that affects the runtime behavior of the generated
DOM class.

Figure 7.2. Output of the -generate both xmlc option.

The same file naming conventions are used as the Java files listed for -for-recomp.

Preparing the Application Environment for Auto-Recompilation

As we have discussed, there are any number of ways to pass XMLC options to the xmlc
command. You can update XMLC_HTML_OPTS with += -generate both; you can add the line
-generate both to your options.xmlc file; or you can use the XMLC metadata approach,
described later in this chapter.

There are other actions you must take in order to prepare the application's deployment
organization to support the capability for the JRE to handle recompilation.

File Location Requirements

The auto-recompilation and class loading feature requires that DOM classes remain as classes and
are not loaded into a jar file, as normally happens in the Enhydra environment. The markup
document must also be stored in the same directory as the class files.

In your application's config.mk file, located at the root of the AppWizard-generated application
source tree, set

XMLC_AUTO_COMP= YES

 155

The impact of this make rule is to store your markup source document and associate DOM class
in the application directory

./output/lib/classes

Configuration File Requirements

The following modifications must be made to your application's configuration files located under
the ./input directory:

• To enable auto-class loading only:

Server.AutoReload = true
Server.ClassPath[] = <location of the generated class file>

Compile your document with the -generate both option.

• To enable auto-compilation and auto-class loading:

Server.XMLC.Autorecompilation = true

Compile your document with the -for-recomp option.

Monitoring Auto-Compilation and Auto-Class Loading

You can monitor the behavior of these runtime features in your application with the xmlc logging
level. In your application configuration file, ./input/<application>.conf, append the
logging level xmlc to the LogToFile object:

Server.LogToFile[] = EMERGENCY, ALERT, CRITICAL, ERROR, XMLC

To check the auto-recompilation functionality of your application, launch the application, then
refresh the browser (shift-refresh) to see output to the log file.

xmlcFactory at Runtime

In order to implement the auto-recompilation and auto-class reloading feature in your application,
you must instantiate your DOM class template with the xmlcFactory method from your
presentation object:

VendorHTML welcome =
(VendorHTML)comms.xmlcFactory.create(VendorHTML.class);

There is a mild impact to runtime performance created by the use of xmlcFactory, because it
accesses the file timestamps of the document markup files or the DOM class file in order to
determine whether recompilation or reloading are in order.

Note

If auto-recompilation and auto-class loading are not turned on by the environment's
configuration, then the create method defaults to using new(), and there is no performance
impact as a result.

 156

Auto-Recompilation for Non-Enhydra Environments

In Chapter 10, "Servlet Web Applications," we will show how you can use the XMLCContext
class to configure the standard Web Container environment to access auto-recompilation and auto-
class loading.

Server-Side Includes

Server-side includes (SSIs) are an excellent approach to achieving reusability of document
fragments such as standard headers, footers, and navigation bars throughout your application.
Pages that incorporate frames as a way of achieving similar goals are problematic for making your
Web site search engine-friendly. SSIs componentize your pages without inadvertently confusing
search engines.

A simplified version of the ShowFloor file footer.ssi would appear something like the
following:

<— begin ShowFloorFooter.ssi —>
<table summary="ShowFloor Table" border="0" width="100%" >
<tr>
<td>
<a href="http://www.otterproductions.com/index.html

</td>
</tr>
</table>
<— end ShowFloorFooter.ssi —>

The SSI file is then requested by the host page using a syntax that is reflected in the following:

<!—#include file="ShowFloorFeader.ssi" —>

For most HTTP servers that support SSI, this would mean that the Web server is being instructed
to load and integrate this file into the parent page at the time the parent page is requested.

In the case of XMLC, this behavior is more aptly described as a "compile-time include," where the
XMLC compiler is being instructed to pull the named file into the parent page. XMLC is told to
process server-side includes with the -ssi command line option.

Interfaces for Late-Binding Implementations

The role of your SSI file may range from a simple banner page with a URL reference or two to a
fully dynamic navigational bar. This raises the question: How do you link the behavior or context
of an SSI with the context of the currently displayed "main" page?

A way to accomplish this is to take advantage of XMLC's capability to generate two class files
from a single compile. The first class is a Java interface that describes the SSI document
fragment's accessor methods. The second class is the implementation of the interface. Using the
command option -generate both generates these to files.

By compiling every document to implement this interface, you now have common code to
manipulate the SSI. As part of the process of returning your manipulated DOM, you could follow
the following algorithm:

 157

if (mainDocument instanceof ShowFloorFooter) {
 UpdateFooter((ShowFloorFooter)mainDocument);
}

Because SSI is a compile-time phenomenon with XMLC, you might draw the conclusion that you
would have to rebuild the application if you decide to change one of the included SSI files. This is
not the case, because XMLC supports runtime class loading.

Again, we'll visit this strategy in greater detail in Chapter 9.

XMLC Metadata

XMLC compiler options can also be passed to xmlc in the form of an XML language called
Enhydra XMLC metadata. Governed by XML rules and an XML Schema, XMLC metadata gives
the developer greater control and flexibility to affect the behavior of the xmlc command.
Metadata applies directives that affect multiple document as well as sub-document levels. Not
surprisingly, many of the directives and their sub-element options map directly to the effects of
command line options. Metadata directives can be used to affect file compilation, groups of input
markup files, and specific markup file elements.

Both options files and XMLC Document metadata files must end with the filename tail .xmlc.
An XML document prolog tells the XMLC compiler that it is to be read as an XML metadata file.

Directives, Attributes, and Option Elements

There are eight directives, all of which are listed in Table 7.2. The directive <document>
remains unimplemented at the time of this book's writing. The entire metadata schema is presented
in Appendix B, "XMLC Metadata."

Table 7.2. XMLC Metadata Directives
Directive Description
<compileOptions> Specifies options for the xmlc compiler. Includes option elements

such as printDOM, keepGeneratedSource, documentOutput,
and processSSI.

<inputDocument> Specifies the document that is to be compiled, and attributes such
as the document format. Option element include is used in cases
that combine auto-recompilation and SSI.

<parser> Specifies the parser and parser options. Optional element
xcatalog references external entities.

<html> Specifies HTML-specific options. Option elements are htmlTagSet,
htmlTag, htmlAttr, and compatibility.

<domEdits> Specifies modifications performed on the DOM during compilation.
Option elements include urlEdit, urlMapping,
urlRegExpMapping, and deleteElement.

<document> Specifies how a document is validated, as well as how source code
is generated on specific elements. document and its option
elements elementDef and tagClass are not currently
implemented.

<documentClass> Specifies properties of the XMLC document class to generate.
Includes option elements such as generate, extends, and

 158

recompilation.
<javaCompiler> Specifies information for the Java compiler. javacOption is an

option element that specifies an option to send to the Java compiler.

Examples of Directive Usages

The XMLC metadata directive compileOptions addresses compile-time options. Each option
is specified as an attribute name-value pair. The following sample metadata directs the xmlc
command to generate the same output it would with the roughly equivalent command line options
-parseinfo, -keep, -dump, -methods, and -verbose. As you can see,
compileOptions's attributes are generally more self-defining than their command line option
equivalents (for example, -keep versus keepGeneratedSource).

<compileOptions
 verbose="true"
 printDocumentInfo="true"
 printParseInfo="true"
 printDOM="true"
 printAccessorInfo="true"
 keepGeneratedSource="true"\ >

Instructions to manipulate the contents of the DOM during compilation are specified as sub-
elements, or "option elements" contained by the domEdits directive. The following option
elements, and their associated attributes, replicate the actions of command line options -
urlmapping, -urlregexpmapping, and -delete-class:

<domEdits>
 <urlMapping url="admindemo.html" newUrl="admin.po"/>
 <urlMapping url="login.html" newUrl="admin.po?event=login"/>
 <urlRegExpMapping regexp="^(.*)\ \ .html$" "$1.po"/>
 <deleteElement elementClasses="DiscardMe"/>
</domEdits>

Slight Deviations Between Command Options and Metadata

A one-to-one mapping between command line options and XMLC metadata is not always the case.
You will want to be careful to understand exactly which directive attributes or options elements to
specify in order to get the desired configuration or effect.

The DocumentClass directive deals with the creation details of the output DOM class template.
In order to use this metadata format for specifying, for example, that the DOM class should be
prepared for auto-recompilation and auto-class reloading, the following three attributes must be
called out:

<documentClass
 delegateSupport="true"
 createMetadata="true"
 generate="both" />

The attribute delegateSupport deals with the creation of a "delegate" whose role is to start up
a new classloader. The fact that you cannot stop and restart a new class in the same classloader is
one of the reasons why Enhydra's architecture supports multiple classloaders.

 159

Building with Enhydra make Files

The Enhydra 3 make file system is unique to the Enhydra development environment. Because the
XMLC development and runtime environments were designed to be highly portable, we'll focus
on the added features of the Enhydra development environment.

Enhydra features a hierarchy of make files and make file variables that automate much of the
process of building XMLC presentations. This feature was discussed in Chapter 5,"Enhydra,
Java/XML Application Server." For each supported language (HTML and WML), the Open
Source Enhydra 3 make rules use the basename of files in the format basename.tail to
generate class names in the format basenameHTML.

For example, if you create a markup page for WML called Vendor.wml, the make rules will
cause xmlc to generate the DOM class template by the name of vendorHTML.class. This class
file is placed in the classes directory within the application source tree hierarchy. The following
command line is generated by the make rules of stdrules.mk when the make command is
executed inside the application's source presentation sub-directory. The generated xmlc command
passes the -d option to the javac command, indicating the resultant class' name and where it is
to be installed:

/usr/local/enhydra3.1b1/bin/xmlc -d ../../../classes -class SFA.
presentation.VendorWML
options.xmlc Vendor.wml

The central make file is stdrules.mk, located in /usr/local/enhydra3.1b1/lib. This is
where the naming convention and the features of the language-specific variable names are defined.

Listing 7.2 illustrates a make file for processing our WML source file. This file was generated by
AppWizard. The make file variable XMLC_WML_OPTS_FILE was created to dictate two things to
the rules in stdrules.mk:

• the name of the options file that you use, and
• the markup language type, as indicated by the naming convention

XMLC_<MarkUpLanguage>_OPTS_FILE.

Listing 7.2 ./src/SFA/presentation/Makefile

Vendor.wml

Copyright 2001 SAMS Publishing

ROOT = ../../..
PACKAGEDIR = SFA/presentation
WML_CLASSES = VendorWML
WML_DIR = .
CLASSES = VendorPresentation \
RedirectPresentation
SUBDIRS = media
XMLC_WML_OPTS_FILE = options.xmlc
include $(ROOT)/config.mk

By default, AppWizard specifies options.xmlc.

Table 7.3 explains the system of make variables specific to the rules found in stdrules.mk.

 160

Table 7.3. Enhydra make File Variables for XMLC Compilation
WML_CLASSES Names of DOM classes to be generated by XMLC.
WML_DIR Name of directory containing the file(s) to be compiled by XMLC.
XMLC_WML_OPTS_FILE Name of file containing options to pass to the xmlc command.
XMLC_WML_OPTS List of options to pass to the xmlc command.

The make file variables XMLC_WML_OPTS_FILE and XMLC_WML_OPTS cannot co-exist in the
same file. This makes sense because they are both used in the role of passing options to the xmlc
command. You must pick which approach you want to take.

If you are compiling WML files, change the variable names where the language name appears:
WML_CLASSES, WML_DIR, XMLC_WML_OPTS_FILE, and XMLC_WML_OPTS.

If you want to pass xmlc command options from the make file, then editing the
XMLC_WML_OPTS variable as follows will do the trick:

XMLC_HTML_OPTS += -keep -dump

Again, the make files that compose the Enhydra development environment for building XMLC
applications are unique to Enhydra. For non-Enhydra environments, you will have to define your
own system, which is more than well-supported by the xmlc command, option files, and XMLC
metadata files.

Summary

We've demonstrated the flexibility of the XMLC compiler environment and runtime environment
from a number of perspectives. The manner in which the compiler can be instructed to effect
different behaviors ranges from command line options, make file variables, and the use of an
XML language composed of XMLC metadata. The application, as well, can be affected in its
capability to automatically recompile documents and/or reload DOM class templates when either
the document or class have been updated to reflect changes in the markup.

The XMLC feature of generating two Java classes and distinguishing the DOM's interface from
the DOM's implementation is the key not only to automatic recompilation and class reloading, but
to other interesting application runtime architectures as well. We will visit some of these
possibilities in Chapter 9.

 161

Chapter 8. HTML Presentations
IN THIS CHAPTER

• Leveraging HTML DOM Implementation
• Preparing for Examples
• Common DOM Operations
• Cloning and Templates
• Different Strokes
• Building Tables
• Working with Stylesheets
• Working with Forms and Controls
• Working with JavaScript
• Generating Output
• XHTML
• Summary

It's time to begin programming with XMLC. The obvious first target is the HTML markup
language. HTML is still king. Its cleaned-up heir apparent, XHTML, is the choice of the WAP
Forum and the i-mode standard to replace both WML and cHTML. The topics and strategies we
will address will map well to other markup languages, including XHTML and WML.

This chapter addresses the topic of runtime manipulation of DOM templates representing typical
HTML elements, including forms and buttons. We will describe some real-world goals for
designing and developing Web presentations that illustrate some of the more common approaches
to generating HTML presentations dynamically. Of course, these examples will be built on the
features and capabilities of our working ShowFloor application.

The topics we will address include clearing the air on the use of generic DOM development versus
the use of specific DOM sub-interfaces and their respective implementations.

By the end of this chapter and the next chapter, you will have a firm grasp of the XMLC
development experience and some of the strategies from which you can choose that best fits your
presentation design objectives.

Note

There we go again, throwing that word template around. By template, do I mean a document
template? A table template? A form template? The answer is "yes" to all of the above. With
XMLC, you can extract any portion of a DOM class template and define it as your "working
template" whether it's a large template consisting of many markup elements, or just a simple
table cell. We'll do our best to describe each template as you progress through the chapter.

To maximize your control of HTML manipulation, be sure to have the HTML 4.1 link
bookmarked on your Web browser at http://www.w3.org/tr/html4/#minitoc for fingertip access to
all the attributes and behaviors of HTML form and form control elements.

Since we're focused squarely on how to manipulate HTML form elements, the data we use will be
mocked-up. The complete implementations, using real-time data, can be found on the book's CD.
We will discuss, at some length, the use of business objects for delivering raw data to presentation
objects using the Enhydra EAF framework.

http://www.w3.org/tr/html4/#minitoc

 162

Leveraging HTML DOM Implementation

Before we immerse ourselves deeply into HTML development with XMLC, let's take a few
moments to clarify the value of leveraging DOM interfaces that are specific to the XML/HTML
language that you are working with. Our goal is to highlight how this style of programming differs
from generic DOM programming in the XMLC environment.

XMLC programming is a contrast of a strict DOM view of markup and extreme flexibility. At one
end of the spectrum, it absolutely enforces the separation of Java from markup HTML and XML.
At the other end of manipulating the DOM template, application architects enjoy extreme
flexibility.

As we'll discuss later on, the strategies you can take to design and leverage the HTML or XML
template document can vary in many ways. Similar flexibility exists when it comes to how your
Java logic accesses and manipulates elements and attributes of the DOM template generated by
the xmlc command.

Table 8.1 lists the supported sub-interfaces of the DOM's node interface. These interfaces reflect
the support for type-safe development specific to HTML development. If you need to manipulate
an element, then you would leverage the HTMLLIElement. In addition to having its own
specific methods, each sub-interface inherits the generic methods of Node and Element.

Table 8.1. DOM Sub-Class Interfaces of DOM's Node Interface
HTMLAnchorElement HTMLAppletElement HTMLAreaElement
HTMLBaseElement HTMLBaseFontElement HTMLBodyElement
HTMLBRElement HTMLButtonElement HTMLDirectoryElement
HTMLDivElement HTMLDListElement HTMLFieldSetElement
HTMLFontElement HTMLFormElement HTMLFrameElement
HTMLFrameSetElement HTMLHeadElement HTMLHeadingElement
HTMLHRElement HTMLHtmlElement HTMLIFrameElement
HTMLImageElement HTMLInputElement HTMLIsIndexElement
HTMLLabelElement HTMLLegendElement HTMLLIElement
HTMLLinkElement HTMLMapElement HTMLMenuElement
HTMLMetaElement HTMLModElement HTMLObjectElement
HTMLOListElement HTMLOptGroupElement HTMLOptionElement
HTMLParagraphElement HTMLParamElement HTMLPreElement
HTMLQuoteElement HTMLScriptElement HTMLSelectElement
HTMLStyleElement HTMLTableCaptionElement HTMLTableCellElement
HTMLTableColElement HTMLTableElement HTMLTableRowElement
HTMLTableSectionElement HTMLTextAreaElement HTMLTitleElement
HTMLUListElement

So what does this buy the developer if you can do everything with generic DOM API methods?
Let's look at some short examples to illustrate this topic.

Dealing with Boolean Attributes

Suppose you want to indicate that a check box is checked before displaying the page to the client:

<input type="checkbox" name="companyRole" value="executive">

 163

<input type="checkbox" id="chkDemo" name="companyRole"
value="employee" checked>

For legacy reasons, the checked attribute is not a real attribute. It's a Boolean attribute, which
means it has no assigned value. Unfortunately, that means you cannot set that attribute using the
standard DOM API. This has been resolved by the W3C in the XHTML language. They simply
eliminated all Boolean attributes so that checked is now checked="checked".

With XMLC, thanks to its support for an implementation of the HTMLElement sub-interface of
the DOM interface, you have a number of options. To set the other checkbox above, identified by
id="chkDemo", the following use of the HTMLInputElement's setChecked() will work:

page.getElementChkDemo().setChecked(true);

Type-Safe Development

Let's take a look at the type-safe nature of XMLC development. The attribute tabindex is used
in HTML markup to control the behavior of which HTML elements receive keyboard focus when
the user hits the keyboard's tab key. For example, if you had a list of buttons in a form, you would
set the tabindex attribute to the numeric value, such as tabindex="1", tabindex="2" and
so on to indicate the ordering of keyboard focus that is displayed when the user hits the tab key.
This example here forces the focus that results from tabbing to move in reverse order, from the
last button to the first. Note that this appears to work on Internet Explorer 6 only.

<input id="mybutton" type="button" name="green" value="green"
tabindex="3">
<input type="button" name="blue" value="blue" tabindex="2">
<input type="button" name="yellow" value="yellow" tabindex="1">

If you want to set the tab ordering dynamically, perhaps because you're building the list of button
elements on-the-fly, there are a couple of ways to set the tabindex attribute:

• Use standard DOM methods to access the Button element, then use a generic DOM
method to update the attribute's value.

page.getElementMyButton().setAttribute("tabindex","3");

• Use the HTML-specific DOM interface to set the tabindex.

page.getElementMyButton().setTabIndex(3);

In the second example, it should be apparent that there are a number of advantages to using the
HTML-specific setTabIndex(), a method defined by HTMLInputElement. First of all, the
setTabIndex() signature requires a parameter of type int, so there's no chance for an illegal
value to cause an exception at runtime. Secondly, there's a reduction in the likelihood for errors
caused by, for example, misspelling the attribute name. Finally, there's no chance of inserting an
unsupported attribute in the targeted element, because the method wouldn't be supported.

The flexibility of XMLC will require fingertip access to the DOM, HTML, and XMLC APIs as
described by the JavaDoc provided with Enhydra XMLC.

Preparing for Examples

 164

Let's prepare the stage for how the examples in this chapter are organized. Since the examples
we'll examine are all Enhydra superservlet EAF-style applications designed to fit into this chapter,
we didn't worry too much about creating an official naming hierarchy, such as
com.otterpod.sfa.presentation.*.

So, instead, you'll see the package name examples.presentation at the top of the
presentation objects, resulting in the naming convention of

./classes/sfa/examples/presentation

in the output class hierarchy, created during the Enhydra make process. Under the presentation
directory located below the src branch, we created a single sub-directory for each group of
related examples in order to keep things simple and easy to find. For example, two of the
examples seen here illustrate this convention:

Example Package
VendorDetails sfa.examples.presentation.vendor.VendorDetails
VendorListing sfa.examples.presentation.vendor.VendorListing

AppWizard was to create the basic Enhydra EAF environment. The project directory was named
SFA, and examples was listed as the package name. To create each example, the following set of
changes were made to the make files, in this case to VendorDetails:

1. Go to examples/presentation and create the subdirectory vendor.
2. Edit presentation/Makefile to add the references to the vendor directory to

SUBDIR.
3. Copy presentation/Makefile to vendor/Makefile.

Now that we've created the basic sub-directory layout, it's time to update the make file in the
vendor directory. Here are the modifications to make:

1. Add one more level for ROOT, so that it reads ROOT=../../../../
2. The HTML page is named VendorDetails.html. Therefore, the Enhydra

environment will automatically generate the XMLC DOM class using the name
VendorDetailsHTML. This name should be added to the HTML_CLASSES make file
variable.

3. Enhydra uses the name of the presentation object source file to name the presentation
object class. Therefore, since we named the source file
VendorDetailsPresentation.java, we added VendorDetailsPresentation
to the make file's CLASSES variable.

4. Update the PACKAGEDIR variable to incorporate the vendor sub-directory.

The modified examples/presentation/vendor/Makefile should appear as follows:

ROOT = ../../../..

PACKAGEDIR = examples/presentation/vendor

HTML_CLASSES = VendorListHTML VendorDetailsHTML
HTML_DIR = .

CLASSES = VendorListPresentation VendorDetailsPresentation

SUBDIRS = media
XMLC_HTML_OPTS_FILE = options.xmlc

 165

include $(ROOT)/config.mk

Back at the top presentation level, we've provided the main menu examplesPresentation.po
for conveniently launching each example application in this chapter. This PO can be found on the
book's CD.

A single cascading stylesheet file was created and stored in examples/presentation/media.
In order to achieve a common look and feel across all the examples, each HTML template
references the vendors.css file in that media directory. An example is shown here:

<head>
<title id="vendorTitle">Questionnaire from Company A</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-
1">
<link rel="stylesheet" href="../media/vendors.css" type="text/css">
</head>

Common DOM Operations

A basic level of DOM programming is an essential aspect of XMLC development. We're going to
spend this section reviewing the most commonly required DOM API methods.

In XMLC development, the developer adds dynamic content to an HTML document template by
adding and manipulating DOM objects. DOM objects represent everything from large sub-
documents containing other DOM objects to small rows in a table.

Using XMLC command line options, static href attributes in form elements can be replaced
with references to presentation objects or servlets. Prototype table rows can be used as small
templates to stamp out dynamically-generated rows.

As we discussed earlier, there's a balance between taking advantage of XMLC's capability to use
id attributes to generate direct access methods, and relying heavily on the low-level DOM API
methods. And for anyone who monitors the XMLC mailing list at Enhydra.org, it doesn't take long
to realize that everybody has their own preference of how to balance the two strategies.

We're going to take a task-oriented view to discuss some of the more common approaches to
traversing or manipulating a DOM template. As we'll see, relying on id attributes can reverse the
reliance on the DOM API for traversing the DOM. But, when it comes to modifying and
expanding the template with new HTML or XML objects, the DOM API is a must.

When No Sub-DOM Is Available

The same discussion applies to XML languages that are not represented by a specific extension of
the DOM interface, such as the HTML and WML sub-DOMs that are available with the standard
XMLC distribution. In Chapter 11, "Wireless Markup Presentations," we will review how easy it
is to work with "unsupported" languages such as W3C's SVG XML language.

You can still take full advantage of the insertion of id attributes to generate access methods
during XMLC compilation. You can also use all the other XMLC features as well, both during
compilation time and runtime. The only loss is the type-safe nature of element-specific classes.

Querying a Node

http://enhydra.org/

 166

Let's begin the discussion of useful DOM methods. There are a number of DOM API methods for
accessing and querying DOM nodes. Recall that nodes are objects that represent different types of
markup, such as Element, Attr, or Text.

• getNodeType()— This method returns the node type. If the node is an Attr node,
then the value ATTRIBUTE_NODE is returned. Other possible values include TEXT_NODE,
and ELEMENT_NODE.

• getNodeName()— Let's say we know that the element is of type ELEMENT_NODE. But
what kind of element is it? This method returns the name of the node, such as TABLE, TD,
or OPTION. If it's an attribute, then getNodeName() might return id or class. In the
case of SVG, it might be font or circle.

• getNodeValue()— This method only returns a value when it makes sense. For
example, if there is an Attr representing class=executive, then getNodeValue()
will return the value of executive. This also works for values represented by nodes of
type TEXT. However, no value is returned for nodes of type ELEMENT_NODE.

Gathering Nodes

Traversing through a DOM is a bit like finding one's way around a large university campus. You
rely on the goodness of one stranger to guide you with one set of instructions to another stranger
to get your next set of instructions, finally reaching your destination. As long as you know where
you are, these methods will find a nearby node relative to your current position.

• getParentNode()— This method will return the parent node of your current node. For
example, if you are operating from the node that was returned by an XMLC-generated
getElement<AttributeValue> command, then getParentNode() would return
the parent of that node.

• getFirstChild() and getLastChild()—Relative to your current node, these
methods, as they suggest, access the parent's first or last child nodes respectively. If your
current node is named TR, then assuming there are cells in this row, getLastChild()
will return the last cell element.

• hasChildNodes()— How do you know if the current node has children? This method
returns true or false.

Once you've moved to that first or last child, you can now move horizontally with the two
methods getNextSibling() or getPreviousSibling().

When you want to move away from the tree orientation of the DOM, the DOM API provides a
convenient array structure for collecting nodes, NodeList. getChildNodes() and item()
are specific to the NodeList view of a DOM's nodes:

• getChildNodes()— This method returns a NodeList containing all the child nodes
of the current parent.

• item()— To access a child in the NodeList, the NodeList object's item() method
will return it.

DOM Manipulation

Let's now address the methods that we're most likely to encounter in our examples of manipulating
a DOM template class.

• appendChild()— This method, as you'll see, is essential for adding new child nodes to
an element, such as adding option items to a Select control, adding rows to a table, or
adding cells to a row.

 167

• removeChild()— When it's time to remove your template clone, for a table's row for
instance, removeChild() does the trick. More information on cloning will be covered
later.

insertBefore() and replaceChild() can also come in handy, but are not as commonly
required. These methods might become useful where selective changes within an existing set of
nodes is required.

Gaining Access to Attributes

So far, none of the DOM accessing methods we've reviewed are useful for accessing the attributes
associated with an element. That's because the DOM treats nodes of type Attr as independent
from the node tree, even though they are associated with elements in markup.

The DOM addresses this by defining attribute-accessing methods as a part of the Element
interface API:

• getAttribute()— When provided with the name of the attribute, this method returns
its value.

• setAttribute()— Sets the value of the named attribute.
• removeAttribute()— Removes the attribute associated with the element. Why

would you need this? As we'll discuss later, this method is used to ensure that the browser
is not confused by the multiple inclusions of id attributes with the same value.

• getAttributeNode()— Returns the node representation of the attribute.

XMLCUtil—A Little Help from XMLC

A small suite of useful utility methods complement XMLC's generation of access methods.
XMLCUtil methods perform commonly needed functions that would otherwise require multiple
calls to DOM methods.

• findFirstText()— Finds the first text descendent node of an element.
• getElementById()— Recursively searches the tree for an element identified by the

given id attribute value.
• DOMInfo()— Convenient runtime class for dumping the contents of the DOM at any

point during execution. Excellent for before-and-after comparisons.
• getFirstText()— Finds the first text descendent node of an element.

Later in this chapter, we'll see how findFirstText() can conserve on DOM-traversal calls.

Cloning and Templates

The nature of the dynamic manipulation of HTML ranges from straightforward, localized content
replacement to the making of wholesale changes to the structure of the document. In this section,
we will walk through strategies for using cloned portions of a DOM template to build new DOM
structure and content.

Content Substitution

 168

Template manipulation can take the form of simple replacement of placeholder or mockup content.
Taking advantage of the role of the id attribute in XMLC programming turns this into a trivial
task:

<HTML>
<BODY>
<P>Street Address: 111 AAA Way.
</BODY>
</HTML>

In this simple HTML example, no additional markup is actually being created or reworked. Our
intent is to simply update the DOM template with a small amount of content using a minimum of
Java logic, illustrated in this standard servlet example (we'll discuss standard servlet development
with XMLC later in Chapter 10, "Servlet Web Applications"):

import examples.business.VendorBO;

public class WelcomeServlet extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException
 {
 XMLCContext xmlc;
 SimpleDocHTML page;
 VendorBO vendor = new VendorBO();

 //XMLCContext is for supporting XMLC in standard servlet
programming.
 //It contains a factory method for loading XMLC generated templates.
 xmlc = XMLCContext.getContext(this);
 page = (SimpleDocHTML)
xmlc.getXMLCFactory().create(SimpleHTML.class);
 page.setTextVendorAddress(vendor.getStreet);
 xmlc.writeDOM(request, response, page);
 }
}

page is a variable of the type containing the generated DOM class, SimpleHTML. The
SimpleHTML class was created from the XMLC compilation of the HTML example. The
mocked-up data associated with the id value vendorAddress is replaced with the string
returned by the fictitious vendor.getStreet(), where vendor is a business object
representing vendor data.

Note

A heavy reliance on SPAN tags was encouraged by older versions of XMLC that keyed on the
association of a SPAN element with an id attribute in order to determine if a
setText<attributeValue> method should be generated. This is no longer a requirement
as discussed in Chapter 6, "XMLC Basics."

Cloning for Stamping New Markup

Dynamic manipulation can also take the form of an orderly, systematic construction of portions of
a DOM template. A table might be enhanced with the addition of new rows of content. To make
things even more interesting, each row or cell may be enhanced with additional elements of
HTML controls, reviewed later in this chapter.

 169

The rows of a table may require different templates of HTML objects depending on the context of,
for example, an online survey that is updated dynamically with new questions and question types
(yes, no, textual, checkboxes, and so on). We will construct such a document later in this chapter.

The DOM interface defines the method cloneNode(). It is implemented by HTMLObjectImpl,
the HTML-specific implementation of the DOM interface. cloneNode() creates an orphaned
duplicate of a selected template. The template might be any of the following:

• a table row
• a table cell
• a collection of yes/no radio boxes
• a complex collection of HTML elements and static text

The duplicate node that results from the cloneNode() operation inherits copies of all the copied
node's attributes and their respective values. The operation looks like this:

Node copiedNode = templateNode.cloneNode(false);

cloneNode() also supports the capability to perform deep cloning. With deep cloning, indicated
by the Java Boolean true as a parameter, the node copy will inherit all text node information as
well. Listing 8.1 demonstrates the results of the cloneNode(true) operation as applied to an
HTML-ordered list. The input HTML follows:

 <li id=VendorInfo>Vendor A

 Product A
 Product B

The sample source code in Listing 8.1 is an Enhydra EAF servlet. It takes advantage of the
XMLCUtil class DOMInfo to display the state of the DOM during execution.

Listing 8.1 vendor/vendorInfo.java

// Enhydra SuperServlet imports
import com.lutris.appserver.server.httpPresentation.HttpPresentation;
import
com.lutris.appserver.server.httpPresentation.HttpPresentationComms;
import
com.lutris.appserver.server.httpPresentation.HttpPresentationExceptio
n;

// Added for our demo.
import org.w3c.dom.*;
import org.w3c.dom.html.*;
import org.enhydra.xml.dom.DOMInfo;

import java.io.*;

public class VendorInfoPresentation implements HttpPresentation {

 public void run(HttpPresentationComms comms)
 throws HttpPresentationException, IOException {

 VendorInfoHTML welcome;

 170

 page =
(VendorInfoHTML)comms.xmlcFactory.create(VendorInfoHTML.class);

 PrintWriter out =
 new PrintWriter(new OutputStreamWriter(System.out, "UTF8"));

 Node tmp = welcome.getElementVendorInfo().cloneNode(false);
 DOMInfo.printTree("Shallow Node",
 tmp, DOMInfo.PRINT_ATTR_DETAILS,out);

 Node tmp2 = welcome.getElementVendorInfo().cloneNode(true);
 DOMInfo.printTree("Deep Node",
 tmp2, DOMInfo.PRINT_ATTR_DETAILS,out);

 comms.response.writeDOM(page);
 }
}

The output of the DOMInfo printTree() method shows the contrasting results of the shallow
and deep clone operations.

Shallow Node:
 HTMLLIElementImpl: LI
 Attributes:
 AttrImpl: id
 TextImpl: VendorInfo
Deep Node:
 HTMLLIElementImpl: LI
 Attributes:
 AttrImpl: id
 TextImpl: VendorInfo
 TextImpl: Vendor A
 HTMLOListElementImpl: OL
 HTMLLIElementImpl: LI
 TextImpl: Product A
 HTMLLIElementImpl: LI
 TextImpl: Product B

The output shown here represents the structure and content of clones of the original DOM
template. Shallow or deep cloning can be used as a strategy to control how much of any sub-
document template is used by an XMLC application.

Flow of a Typical Cloning Operation

Let's analyze a more interesting use of cloning. It's a common task to add more than one item to an
HTML object that's acting as a container of other objects. For example, the rows of a table can be
used to contain a vendor's name. Or the options in a Select element representing an Option
Menu might be added dynamically as well.

In XMLC programming, the common approach to performing this task is to extract a mini-
template from the larger DOM class template and use that template as a "mold" to "cast" freshly
acquired data in the shape of the original template.

Figure 8.1 attempts to graphically represent the individual steps representing the process.

Figure 8.1. Simple static-dynamic vendor detail page.

 171

This mini-template is an HTML Row element containing two cell elements. Our goal is to use this
as a template to reproduce identically structured rows with new content. Some of the following
numbered steps correspond to the actions performed on the template and the parent HTML table.

1. Fetch the template, typically using an XMLC-generated
getElement<attributeValue> method. In this case, it's
getElementVendorRow().

2. Clone the template element with cloneNode().
3. Remove the id attributes. You'll see how to do this later in this section.
4. Step through an iteration of generating a new dynamic value or set of values for insertion

into the cloned object.
5. Replace cloned values with new value(s).
6. Append the clone to the parent element.
7. Return to Step 4, if new values remain.
8. Having no further need for the template, delete it so that it doesn't appear in the final

markup.

This may appear as a very rigid process, but there are plenty of ways to tailor the dynamic
elements of your algorithm to suit your goals. In fact, there are no rules that prevent you from
dynamically introducing new DOM components, even though the intent is not captured in the
original template document.

For example, you might decide to change the background color of every fifth row in a table. Or
you might decide to insert a small graphic in the same cell to indicate that the vendor is a sponsor.
It really comes down to using algorithms and strategies that make Web presentations that are easy
to maintain or rework over time.

Caution

Although it's easy to introduce new elements without the aid of template cloning, your
presentation may generate unexpected side effects when rendered simply from, for example,
unanticipated overcrowding. Using templates as storyboards will help to avoid these issues.
Another way to approaching adding new elements dynamically is to simply include them in
the storyboard template to begin with, with the option of not incorporating them in the final
result.

Removing ids

 172

In Step 3 of the cloning algorithm we just reviewed, you remove the reference to the id attribute
that was inherited by the clone. Your first impression may be that this is a bit of unnecessary
housecleaning. In fact, it's essential to remove id attributes because of their potential impact on
HTML browsers.

Recall that id attributes are defined as representing unique instances of an HTML element. By
that definition, they're not being used properly if more than one attribute with the same value
appears in more than one instance of a particular element.

Because we're using the template to replicate copies of it, it will introduce multiple occurrences of
an id with the same value. The DOM interface method removeAttribute() takes care of this
important operation.

Conversely, removal of class attributes is not necessary at all, because 1) if they were used for the
purposes of mockup data, they were removed using the -delete-class option during
compilation; or 2) they are being used for some other purpose, such as a stylesheet reference, and
should therefore not be removed.

Later in this section, you will work an example that shows the entire cloning process as applied by
the ShowFloor application.

Options for Extreme Dynamic Manipulation

By no means does the cloning process we've described thus far represent the upper end of the
dynamic capabilities of XMLC programming. As you'll see in the next chapter, it's possible to
build an entirely new DOM template from other DOM classes in order to achieve the greatest
amount of control and partitioning of Web pages leading to simplified maintenance and future
redesign.

Perhaps the ultimate flexibility in the dynamic nature of XMLC programming is reflected in the
capability to load, at runtime, different implementations (or "behaviors") that deal with the same
template. This approach to runtime polymorphic behavior is made possible by the XMLC
command line option -generate. This will be discussed in greater detail in Chapter 11.

You'll see that it's possible to make wholesale changes to the DOM tree that deliver practical
values in the areas of maintainability, time savings, and internationalization support.

Different Strokes

The XMLC compiler gives you your template and some convenient access hooks into targeted
areas of the template. The presentation logic can now manipulate both the content and the
structure as you choose.

In Chapter 2, we discussed the fact that the design of the login page could be handled differently
depending on your particular strategy. We chose the route of building a single template with all
the possible dynamic sub-templates, including the error message for a failed login. Others might
choose to have multiple admin templates, or to simply treat the error message as an HTML
element that's created programmatically without the use of a template row identified by an id.
Instead, create it on-the-fly, adding the row, and the error message it contains, to the resultant
DOM template if needed.

 173

The same flexibility of options applies to the strategy one takes when manipulating the DOM
template. Some may want to minimize the use of DOM programming as much as possible. Others
may enjoy the generic flexibility of DOM programming. In this chapter, for instance, our view is
to maximize the use of XMLC-generated methods because we want to emphasize the highest level
of XMLC abstraction possible, and convince you that you don't need the DOM API as much as
you might think. Once you're comfortable with this approach, then the world's your oyster if you
choose to start diving deeper into the DOM API.

Take the simple example of referencing the top of a table template. The top, of course, is
represented by a node of type HTMLTableElement. We may need that node to, for example,
append a new table row of type HTMLTableRowElement.

There are at least two ways to locate that table element. One way is to take the template row that
you are working with and simply ask for its parent with a DOM API method:

Node vendorTbl = templateRow.getParentNode();

Another approach is to insert an id attribute into the markup to begin with. <table
id=vendorTbl> would trigger the xmlc command to generate a custom accessor method giving
us direct access to the parent node that contains the Table element:

Node vendorTbl = getElementVendorTbl();

It doesn't particularly matter which route you choose. We've already stated that we're going to
maximize the XMLC conveniences, in turn minimizing our reliance on the DOM API. Others may
choose to use the lower-level DOM methods in order to insert more logic portability into the
design process.

Loosening id Bindings with getElementByID()

So far, we've talked exclusively about the use of the XMLC-generated getElement
<AttributeValue> methods for indexing the location of the DOM that's been targeted for
dynamic manipulation. However, there is another way that also bypasses the need for DOM
traversal. getElementById() is available from the DOM API, as inherited and implemented by
the XMLObjectImpl and HTMLObjectImpl classes, to return an element that is associated with
a unique id. Implemented by the HTMLObjectImpl and XMLObjectImpl XMLC classes, this
method takes advantage of access to the internal table of ids created by the Xerces parser to avoid
performance penalties, as compared to the performance of the equivalent XMLC-generated access
methods

HTMLTableElement vendorTbl = page.getElementByID("VendorTbl");
HTMLTableElement vendorTbl = page.getElementVendorTbl();

that are functionally equivalent. So what distinguishes them?

• When using the getElement<AttributeValue> approach, compile-time error
messages are generated if the method is referenced but has somehow been omitted by the
designer. This condition might be the result of a designer misspelling the id attribute
value.

• When using the getElementById() approach, the programmer can check for the
existence of such a tagged element without having to worry about the existence of the
actual generated method.

 174

The sum total of their difference has to do with the tightness of the binding between the document
and the presentation logic. With getElementById(), the linkage between the XMLC template-
building and the runtime logic is reduced.

There's more to these different approaches than catching misspelled id attribute values. The
developer can use getElementById() to easily check for a non-null value, indicating the
attributed element is not present and therefore can be bypassed in this presentation logic.

This is an important design strategy to consider if your application is being designed to leverage
auto-recompilation. Imagine a designer updating an HTML or XML file and forgetting to insert a
particular id. If your application relies on the accessor methods, then the recompilation will still
complete successfully; but after the class is auto-loaded, references to the class will result in an
exception.

In order to address this possibility, you may install a policy that requires that only precompiled
classes that have been tested are made available for auto-loading. Or, you may want to require the
use of getElementById() to enable runtime checking for the existence of the id, and therefore
gracefully handle the error condition.

Building Tables

The emerging theme of this chapter seems to reiterate the fact that XMLC supports an incredible
amount of flexibility and variation of implementation strategies, while still delivering on its
promise of supporting highly maintainable Web presentations.

In this section, we're going to focus on perhaps the most common chore of all, updating an HTML
table. We'll do this by looking at two cases representing different levels of dynamic manipulation.
In the first example, we will perform an in-place content update of a statically-formatted table. In
the other, we'll add new rows and content to that same table.

Static Tables with Dynamic Content

Let's address the ShowFloor page that will display information about a single vendor to the viewer.
This page, VendorDetails, is generated by the selection of an individual vendor from a list of
vendors in a previous page, VendorList. The strategy for this page is to simply display a table
containing two columns. In the first row, we'll span the two columns with the vendor's name. We
will then use the first column to label the contents of the adjoining column. Since we know the
nature of the data in the second column, the first column's content will be pre-existing template
content.

In Listing 8.2, the document VendorDetails.html contains a single table. We've inserted id
attributes in the right column of cells to generate the access methods we'll need to deliver the
dynamic content. Class attributes are used for stylesheet control.

Listing 8.2 vendor/VendorDetails.html

<html>
<head>
<title>Vendor List</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-
1">
<link rel="stylesheet" href="../media/vendors.css" type="text/css">
</head>

 175

<body bgcolor="#FFFFFF" text="#000000">
<table width="20" border="0" cellspacing="4" cellpadding="0"
id="VendorTable" class="vendorLabels">

 <tr>
 <td colspan="2"><img src="../media/spacer.gif" width="400"
height="2"></td>
 </tr>
 <tr bgcolor="#00FF00">
 <td colspan="2" class="vendorTitle"
id="VendorName">AtomicPoweredLinuxCompany</td>
 </tr>
 <tr>
 <td width="10" align="right" class="vendorLabels"> Street:</td>
 <td width="230" class="vendorInfo" id="vendorStreet">1991 AlphaWave
 Avenue</td>
 </tr>
 <tr>
 <td align="right" width="10" class="vendorLabels"> City:</td>
 <td width="230" class="vendorInfo" id="VendorCity">Santa Cruz</td>
 </tr>
 <tr>
 <td align="right width="10" class="vendorLabels"> State:</td>
 <td width="230" class="vendorInfo" id="VendorState">CA</td>
 </tr>
 <tr>
 <td width="10" class="vendorLabels" align="right"> Country:</td>
 <td width="230" class="vendorInfo" id="VendorCountry">USA</td>
 </tr>
 <tr>
 <td width="10" nowrap class="vendorLabels" align="right"> <span
class="vendorLabels">Category </td>
 <td width="230" class="vendorInfo" id="VendorDesc">Sub-atomic
appliances</td>
 </tr>
 <tr>
 <td width="10" class="vendorLabels"
align="right">Product </td>
 <td width="230" class="vendorInfo" id="VendorProduct">The
Appliance</td>
 </tr>
 <tr>
 <td width="10" class="vendorLabels" align="right">
Description:</td>
 <td width="230" class="vendorInfo" id="VendorProdDesc">Great sub-
atomic application
 server for small devices.</td>
 </tr>
 <tr>
 <td colspan="2" class="vendorLabels"><img
src="../media/spacer.gif"width="80"
height="10"></td>
 </tr>
</table>
</body>
</html>

We've added two additional rows to contain references to adjustable "spacer" GIF image files.
This is a standard designer technique to control the displayed dimensions of the table. Believe it or
not, tables are not very well-behaved in the area of taking geometric instructions. We'll take

 176

advantage of this later in the chapter to illustrate how to effect attribute changes in generated
HTML.

Now let's take a look at the presentation object that is going to replace the mockup in
VendorDetails.html. In this very simple slide, we take advantage of all the
setText<attributeValue> methods generated during the XMLC compilation. This is a
straightforward process with no requirement for iterations through data or references to DOM
elements. Instead, our Enhydra EAF presentation object,
VendorDetailsPresentation.java, carries out the operation described in Listing 8.3.

Listing 8.3 vendor/VendorDetailsPresentation.java

package examples.presentation.vendor;

//Import the associated business object.
import examples.business.vendor.VendorBO;

import java.util.*;
import com.lutris.xml.xmlc.*;
import com.lutris.appserver.server.httpPresentation.*;
import org.w3c.dom.*;
import org.w3c.dom.html.*;

public class VendorListPresentation implements HttpPresentation {

 public void run(HttpPresentationComms comms)
 throws HttpPresentationException {

 //Get the vendor selected in VendorList. Ignore error checking.
 String vendorName = comms.request.getParameter("VendorName");

 //Hypothetical business object returns details of the Vendor.
 VendorBO vendor = new VendorBO(vendorName);

 //Load the template page representing VendorDetails.HTML
 VendorDetailsHTML vendorPage =

(VendorDetailsTML)comms.xmlcFactory.create(VendorDetailsHTML.class);

 vendorPage.setTextVendorName(vendor.name());
 vendorPage.setTextVendorStreet(vendor.street());
 vendorPage.setTextVendorCity(vendor.city());
 vendorPage.setTextVendorCountry(vendor.country());
 vendorPage.setTextVendorDesc(vendor.description);
 vendorPage.setTextVendorProduct(vendor.product());
 vendorPage.setTextVendorProdDesc(vendor.prodDescription());

 comms.response.writeHTML(vendorPage);
 }
}

In VendorDetailsPresentation.java, we only need to know the name of the vendor that
was selected in the previous page, VendorList.html. This is accomplished with a call to
getParameter(), which retrieves the value returned by the form object in the VendorList
page. We'll see more about how this works later in the chapter.

Note

 177

It might be tempting to add id attribute assignments to each label in the VendorDetails
example in order to programmatically update the page with localized translations of the labels,
such as Product:. That's certainly a legitimate strategy, but as we will review in Chapter 9,
"Presentation Strategies," there are a number of strategies from which to choose.

To access the details of that particular vendor, we rely on a business object, VendorBO, which is
specifically written to provide that information. To get to that object, we've imported it with the
following statement:

import example.business.vendorBO;

After creating an instance of VendorBO, for Vendor Business Object, we then invoke its public
methods to return the strings we need to populate the right-hand column of the table template.
Following from our discussion of Enhydra EAF development, VendorBO formulates its responses
after fetching the raw data by invoking one or more data objects in the data layer. These objects
encapsulate the required SQL queries of the attached database.

Note

To keep our emphasis on XMLC development, all references to data objects and most of the
business objects are left to the reader to explore more deeply. These objects can be found in
the ShowFloor application source tree located on the book's CD.

Figure 8.2 illustrates the generated result of VendorDetailsPresentation.java.

Figure 8.2. Simple static-dynamic vendor details page.

Dynamic Tables, Content and All

Let's add a wrinkle to the same vendor details page in order to expand the table's dimensions with
new, interesting, variable content. We will restructure the page and the code to support the

 178

capability to add more than one product, because many vendors will have more than a single
product. Simply put, to add more than one product, we'll need to append more rows to the table.

The HTML markup below is extracted from Listing 8.1. Retaining the existing id attributes,
we've inserted additional id attributes to identify each row. We are doing this in order to turn each
of the three rows (ProductRow, ProdDescRow, and SpacerRow) into three templates that we
can use to clone after adding new data, then append to the bottom of the table.

<tr id="ProductRow">
<td width="10" class="vendorLabels" align="right">Product </td>
<td width="230" class="vendorInfo" id="VendorProduct">The
Appliance</td>
</tr>
<tr id="ProdDescRow">
<td width="10" class="vendorLabels" align="right"> Description:</td>
<td width="230" class="vendorInfo" id="VendorProdDesc">Great sub-
atomic application
 server for small devices.</td>
</tr>
<tr id="SpacerRow">
<td colspan="2" class="vendorLabels"><img src="../media/spacer.gif"
width="80"
height="10"></td>
</tr>

We've introduced the row SpacerRow to visually represent a separation between two products for
clarity and readability.

Tip

The conventions that you use when naming id attribute values is up to you. We like to refer
to their type; that is, the type of HTML element they're referencing. We find that it helps with
the clarity of the presentation logic and more closely aligns the Java code with the markup
document in a self-documenting manner.

With the updated HTML in hand, let's reflect these changes in the presentation object. We will
replace the statements

vendorPage.setTextVendorProduct(vendor.product());
vendorPage.setTextVendorProdDesc(vendor.prodDescription());

with a looping statement that will append groups of cloned rows containing representations of one
or more products:

 //Fetch the table and table's row templates.
 HTMLTableElement table = vendorPage.getElementVendorTbl();
 HTMLTableRowElement productRow = vendorPage.getElementProductRow();
 HTMLTableRowElement prodDescRow =
vendorPage.getElementProdDescRow();
 HTMLTableRowElement spacerRow = vendorPage.getElementSpacerRow();

 Node clonedRow;
 String height = "20"; // for our spacer row.
 VendorProduct product;

 //Fetch product list and enter a loop
 Enumeration products = vendor.productList());
 while (products.hasMoreElements()) {

 179

 if (! products.hasMoreElements()) {
 height = "10";
 }
 //Fetch the image's height attribute.
 Element img = (Element)spacerRow.getLastChild();
 img.setAttribute("height", height);

 product = products.next();

 clonedRow = spacerRow.cloneNode(true);
 table.appendChild(clonedRow);

 vendorPage.setTextVendorProduct(product.name());
 clonedRow = productRow.cloneNode(true);
 table.appendChild(clonedRow);

 vendorPage.setTextVendorProdDesc(prduct.description());
 clonedRow = prodDescRow.cloneNode(true);
 table.appendChild(clonedRow);

 }

 // get rid of the row templates now that we're done with them.
 table.removeChild(productRow); // removes the template
 table.removeChild(prodDescRow); // removes the template
 table.removeChild(spacerRow); // removes the template

 comms.response.writeHTML(vendorPage);
}

The result of this change is shown in Figure 8.3.

Figure 8.3. The revised simple static-dynamic vendor detail page.

 180

Dealing with Vestigial Templates

If you forget to remove the template rows used for cloning, you'll certainly find out the first time
you successfully run your application. You'll immediately discover that the presentation object
displays the cloned row and its mock content right along with the newly processed dynamic data.
This is why we rely on the DOM method removeChild() to do a little housekeeping before
turning the enhanced DOM template into HTML that's ready for display back to the client.

Part of the removal process requires a reference back to the parent node of the template table rows.
Our intent for inserting an id attribute into the table element might not have been clear at first:

<table id=vendorTbl>

By doing this, it's a quick call to get to the row's parent node and remove all traces of the template
rows. As we explained earlier, the table variable could have also been set by a call to
getParentNode(), relative to the row node. The following statements address the operating of
removing the original row templates used for cloning:

HTMLTableElement table = GetElementVendorTbl();
....
table.removeChild(productRow);
table.removeChild(prodDescRow);
table.removeChild(spacerRow);

You now have a DOM template with all vestiges of the original row-building templates removed.

 181

Changing Attribute Values

The spacer.gif static image used in the VendorDetails page is a designer's trick to
guarantee an absolute width or height of a table, row, or cell. A single GIF image can be
referenced from many locations within an HTML file. At each location, it can be instructed to
assume different dimensions depending on the setting of the height and width attributes
associated with the IMG element.

We inserted an id attribute in the row element containing the spacer.gif reference. However,
the id and its value spacerRow are associated with the table's row element, and not with the
IMG element directly. So, we had at least two options for getting access to the IMG element's
height attribute:

• Insert an id attribute into the IMG element, or
• Use DOM methods to access the IMG node and its height attribute.

In the first option, if you inserted an id with the value spacer, you could then use any of the
following non-inherited methods from HTMLImageElement to make the update: setWidth(),
setVspace(), setUseMap(), setSrc(), setName(), setLowSrc(), setLongDesc(),
setIsMap(), setHeight(), getSrc(), getName(), getLongDesc(), getHeight(),
and getBorder(). The appropriate method for use in this example is setHeight():

Element spacer = vendorPage.getElementSpacer()
spacer.setHeight(20);

If we go with the second option, then the following calls would be required:

HTMLTableRowElement SpacerRow = vendorPage.getElementSpacerRow();
Node img = (Element) SpacerRow.getFirstChild();
spacer.getAttributeNode("height").setValue("20");

This is the strategy we went with in Listing 8.1. But note that using a DOM method that relies on
relative positioning can lead to problems down the road in the event that the template is reworked
by the designer. Perhaps the first option, where we associate an id directly with the IMG element,
might be the safest route to take.

Wading Through In-Line Presentation Information

HTML does not follow the general XML philosophy of structuring data independent of
information that indicates display-specific requirements. HTML was heavily used before the
general acceptance of stylesheets, so it's not surprising that its one-stop-shopping markup
approach would incorporate the heavy use of , <I>, , and other elements that
influence the browser in the presentation department.

Earlier, we advocated the use of stylesheets as a means of loosely coupling the displaying of
content to the content itself. We also enjoy taking advantage of class-defining stylesheet selectors
in order to more easily influence programmatically the display attributes of the manipulated DOM
template. This loose coupling also means that it would be easier to ship different stylesheet-
defined "skins" for all sorts of reasons, including the needs of individuals who require high-
contrast user interfaces in order to better distinguish between fonts and the browser's background
color.

 182

So let's get off our soapbox and back to reality. There's a ton of markup out there with plenty of
in-line instructions for controlling the display of content. The HTML fragment here is from the
real world:

<td id="restaurant"><i>Jack's Hamburgers</i>

The problem that we're presented with is how to get access to the text node represented by
Jack's Hamburgers from the table cell element td. Doing so will require some code to
traverse past the and <i> elements.

Earlier, we introduced XMLCUtil. Another one of its methods, findFirstText(),was created
to solve the problem we're currently trying to address.

Rather than working your way down a DOM branch, you can instead use this method to simply
indicate that you want the first text node that findFirstText() encounters as it walks through
the children of the td element. The following fragment returns the value Jack's Restaurant:

TestHTML testPage =
(TestHTML)comms.xmlcFactory.create(TestHTML.class);
HTMLTableCellElement cell = testPage.getElementRestaurant();
Text txt = XMLCUtil.findFirstText((Node)cell);
System.out.println("value: " + txt.getNodeValue());

Working with Stylesheets

Stylesheets are an essential tool for maintaining a consistent look and feel across the pages of a
Web site, such as ShowFloor, with a minimum of work. Once a stylesheet is established, it's just a
matter of associating individual styles with elements using class attributes.

The HTML fragment here is from the ShowFloor VendorList page. The page, as the name
suggests, lists the vendors participating in the show from which the visitor can select in order to
get access to the VendorDetails page.

<table id="VendorListTbl" width="200" border="0" cellspacing="0"
cellpadding="0">
 <tr>
 <td></td>
 </tr>
 <tr id="vendorListRow">
 <td class="vendorListGreenBG" id="VendorNameCell">Vendor Company
A</td>
 </tr>
 <tr class="mockup">
 <td class="vendorListBlueBG">Vendor Company B</td>
 </tr>
 <tr class="mockup">
 <td class="vendorListGreenBG">Vendor Company C</td>
 </tr>
 <tr class="mockup">
 <td class="vendorListBlueBG">Vendor Company D</td>
 </tr>
</table>

 183

The HTML for VendorList.html alternates the background colors used for each row
containing the vendor name. Style selectors, specified with the class attribute, indicate the
background color to use. This makes it possible for the ShowFloor administrator to modify the
look and feel of how the alternating behavior is realized by modifying the cascading stylesheet file.

Listing 8.4 demonstrates how the VendorListPresentation.java PO can manipulate the
class references to selectors on a row-by-row basis.

Listing 8.4 vendor/VendorListPresentation.java

package examples.presentation.vendor;

import java.util.*;
import com.lutris.xml.xmlc.*;
import com.lutris.appserver.server.httpPresentation.*;
import org.w3c.dom.*;
import org.w3c.dom.html.*;

public class VendorListPresentation implements HttpPresentation {

 public void run(HttpPresentationComms comms)
 throws HttpPresentationException {

 String vendors [] = { "Apple Computer", "Anderson Paint", "Anne's
Software Shop",
"Alex Software","Annex Systems", "AghMeister Systems"} ;

 VendorListHTML vendorPage =
 (VendorListHTML)comms.xmlcFactory.create(VendorListHTML.class);

 // find our way to the DOM nodes representing the table
 // and the row element.
 HTMLTableElement table = vendorPage.getElementVendorListTbl();

 //Fetch the row templates.
 HTMLTableRowElement vendorRow =
vendorPage.getElementVendorListRow();
 HTMLTableCellElement cell = vendorPage.getElementVendorNameCell();
 vendorRow.removeAttribute("id");
 cell.removeAttribute("id");

 Node clonedRow;
 //Fetch vendor list and enter a loop
 for (int i = 0; i < vendors.length; i++) {
 cell = vendorPage.getElementVendorNameCell();
 if (i % 2 == 0) {
 cell.getAttributeNode("class").setValue("vendorListGreenBG");
 } else {
 cell.getAttributeNode("class").setValue("vendorListBlueBG");
 }
 vendorPage.setTextVendorNameCell(vendors[i]);
 clonedRow = vendorRow.cloneNode(true);
 table.appendChild(clonedRow);
 }
 // get rid of the row templates now that we're done with them.
 table.removeChild(vendorRow); // removes the template

 comms.response.writeHTML(vendorPage);
 }
}

 184

Working with Forms and Controls

With the advent of the PC some 20 years ago, the old world of forms-based data entry seemed to
be a style of user interface interaction that was relegated to the 3270 half-plex terminals of IBM
Mainframe glasshouses. The PC introduced full-plex and gave us things like WordStar, MultiCalc,
and Lotus 1-2-3. Today, their conquering ancestors, Word and Excel, have to share the desktop
with the re-emergence of form-style user interfaces, thanks to the success of request/response
Internet applications.

Forms are containers of controls enhanced with static and dynamic content organized to carry out
a task, such as registering a user or logging in an administrator. Forms are often designed as static
content, but we want to focus on those that have some dynamic content as well, tailoring the
presentation to either the individual, or to data fetched for a database.

HTML controls consist of buttons, check boxes, radio boxes, option menus, and single- and multi-
line text boxes. The form acts as a "widget container" for presenting a cohesive interaction with
the user and then sending the collected interaction back to the HTTP server. As shown here, it is
also responsible for routing the results of the form interaction back to a script or servlet as
specified with its action attribute. The event is caused by the default behavior of the Submit
button:

<FORM action="/vendor/questionnaire.po" method="post">
...HTML with one or more controls...
 <INPUT type="submit" value="Send">
</FORM>

For the purposes of the next few discussions, we will ignore the client-side validation and
processing role that JavaScript can bring to forms processing. Instead, we will focus on how to use
XMLC programming to generate dynamically composed HTML forms. Server-side validation will
be addressed in the next chapter.

Controls and Access to Control Results

HTML controls reflect some of the typical inconsistencies within the overall environment of
HTML programming. Controls do not always reflect a consistent interface. And some effects,
such as buttons, can be accomplished by a couple of controls, such as the button and input
elements.

Controls are given a name by their name attribute, which is used by a post-processing agent, such
as a servlet or CGI script, to access the values gathered by the form. The value attribute is
usually used to specify the control's initial value. Again, be sure to have access to an HTML
document to verify how each control addresses its initial value. For example, instead of using
value, a textarea control establishes its initial value as whatever content it is originally
provided with. The initial values are an important topic when it comes to use of the reset button
for starting over. The initial value is considered the control's current value until it is changed by
the user or by a client-side script.

The values of controls in a form are returned to the script or servlet as specified by the form
element's action attribute. Most of the control values, modified or otherwise, are returned along
with the name. Thus, the presentation object (servlet) can decompose the submitted form with
calls such as the following:

 185

• getParameter(name)— Returns a string containing the lone value of the specified
query parameter, or null if the parameter does not exist.

• getParameterNames()— Returns the parameter names for this request as an
enumeration of strings, or an empty enumeration if there are no parameters.

• getParameterValues(name)— Returns the values of the specified query parameter
for the request as an array of strings, or a 0 length array if the named parameter does not
exist.

When a form is submitted for processing, some controls have their name paired with their current
value and these pairs are submitted with the form. Using the methods above, we can perform the
following whether it's an Enhydra PO

String value = comms.request.getParameter("age");

or a standard servlet

String value = request.getParameter("age");

Building a Dynamic Questionnaire Form

Let's get back to the ShowFloor application and construct a questionnaire feature we'll call
VendQuest.

To illustrate the more common HTML controls and how they can be integrated within a single
form, VendQuest will be designed to serve as an automated questionnaire service, provided to
vendors by ShowFloor. This service will give vendors the opportunity to easily generate dynamic
questionnaires in order to generate feedback from visitors to the ShowFloor Web site. It will be so
dynamic that a vendor can easily update their questionnaire while the SFA service is running and
the show is in progress. Multiple and single-choice as well as textual questions can be asked of
visitors regarding their interests, roles, feedback, and any other question that the vendor might be
interested in. VendQuest will also provide the capability to rank items, such as the vendor's
favorite show topic.

As we will discuss in the next chapter, VendQuest will support an XML environment for the
authoring and generation of vendor-defined questionnaires. For example, a fragment of the input
XML document may result in an HTML questionnaire that asks the user the following question:

<Question type="SC">
<Prompt>What is your role at your company?</Prompt>
<Choice>Engineer</Choice>
<Choice>Executive</Choice>
<Choice>Writer</Choice>
<Choice>Gopher</Choice>
</Question>

This question is assigned the type attribute value of SC, indicating that it is a "single choice"
question requiring that only one choice be selected. You can envision the choices presented to the
visitor as a group of radio boxes or an options menu. The approach we take will be dictated by the
HTML template that we design later.

However, for now, we are going to demonstrate just enough business logic to generate these
questions in code. In the next chapter, we'll show how Zeus, the data-binding project from
zeus.enhydra.org, can be used in concert with XMLC to produce a highly dynamic Web
application in which XML is used to drive XMLC presentations.

http://zeus.enhydra.org/

 186

The VendQuest Template

The template we'll be working from is shown in Figure 8.4. All the labels, questions, and choices
are mock information. Even the page title, "Questionnaire From Company A," is storyboard
mockup.

Figure 8.4. The VendQuest template.

We have kept the form's organization relatively simple in order to keep the code behind the
example simple. For instance, we will put each choice or option on a single row, rather than try to
put two or three across. That's another exercise for you to attempt on your own.

The HTML will take full advantage of id attributes. The strategy behind how each id is
leveraged will be reviewed. The HTML appears in Listing 8.5.

Listing 8.5 vendQuest/Questionnaire.html

<html>
<head>
<title id="vendorTitle">Questionnaire from Company A</title>

 187

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-
1">
<link rel="stylesheet" href="../media/vendors.css" type="text/css">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<p id="title" class="regTitle">SFA Questionnnaire from <span
id="vendorName"> Company A</
span>
<form name="form1" method="post" action="ProcessQuestions.po">
 <table id="QTable">
 <tr id="SpacerRow">
 <td colspan="2" class="regLabel" nowrap><img
src="../media/spacer.gif" width="358"
height="8"></td>
 </tr>
 <!— Single Choice Template —>
 <tr id="PromptRow">
 <td colspan="2" id="PromptCell" class="regLabel" nowrap>What is
your favorite
Color?</td>
 </tr>
 <tr id="SCRow">
 <td class="regField" width="30"><img src="../media/spacer.gif"
width="30"
height="20"></td> <td id="SCInputCell" class="regField"
width="325">
 <input id="SCInput" type="radio" name="radiobutton"
value="radiobutton">
 Answer 1</td>
 </tr>
 <tr class="mockup">
 <td class="regField" width="30"> </td>
 <td class="regField" width="325">
 <input type="radio" name="radiobutton" value="radiobutton">
 Answer 2</td>
 </tr>
 <!— Rankings Template —>
 <tr class="mockup" >
 <td colspan="2" class="regLabel" nowrap>Rank in order of priority
your favorite
season</td>
 </tr>
 <tr id="RankRow">
 <td class="regField" width="30" height="21"><img
src="../media/spacer.gif" width="30"
height="20"></td>
 <td class="regField" width="325" height="21">
 <select id="RankSelect" name="select">
 <option id="RankOption">Spring</option>
 <option class="mockup">Summer</option>
 </select>
 Choice #1</td>
 </tr>
 <tr class="mockup">
 <td class="regField" width="30"> </td>
 <td class="regField" width="325">
 <select name="select2">
 <option value="Spring">Spring</option>
 <option value="Summer" selected>Summer</option>
 </select>
 Choice #2</td>

 188

 </tr>
 <!— Multiple Choice Template —>
 <tr class="mockup">
 <td colspan="2" class="regLabel" nowrap>What topics are of
interest to you?</td>
 </tr>
 <tr id="MCRow" >
 <td class="regField" width="30"><img src="../media/spacer.gif"
width="30"
height="20"></td>
 <td id="MCInputCell" class="regField" width="325">
 <input id="MCInput" type="checkbox" name="checkbox"
value="checkbox">
 Topic A</td>
 </tr>
 <tr class="mockup">
 <td class="regField" width="30"> </td>
 <td class="regField" width="325">
 <input type="checkbox" name="checkbox2" value="checkbox">
 Topic B</td>
 </tr>
 <!— Comment Text Area Template —>
 <tr class="mockup">
 <td colspan="2" class="regLabel" nowrap>Tell us what we can do to
build
 a better product?</td>
 </tr>
 <tr id="CommentRow">
 <td width="30"><img src="../media/spacer.gif" width="30"
height="20"> </td>
 <td width="325">
 <textarea id="CommentTextArea" name="textfield" rows="3"
cols="30"></textarea>
 </td>
 </tr>
 <tr id="SubmitRow">
 <td colspan="2">
 <input type="submit" name="Submit1" value="Submit">
 <input type="reset" name="Submit2" value="Reset">
 </td>
 </tr>
 </table>
</form>
</body>
</html>

There are a couple of things to note about this listing. First, we've inserted a number of class
attributes for those parts of the document that we can throw away before the template is generated
by xmlc. We're creating a healthy reliance on the use of class attributes to specify selectors for
certain presentation attributes, such as font and font color. We're also using class attributes such as
class="mockup" to identify mock template and content that will be thrown away by specifying
-delete-class mockup in the options.xmlc file.

How do we know which HTML markup to label as mockup? First, wherever there is a row
containing a redundant input element acting as the second checkbox or radio box can be
eliminated. Also, wherever a row contains a second option element or second select statement,
that element can be marked as mockup as well. To see the effect of removing the elements
identified as mockup, try the command

 189

xmlc -delete-class mockup -docout q.html Questionnaire.html

This xmlc command will stop short of generating a class file, and instead create an HTML file
that can be viewed with a browser using the trimmed-down template shown in Figure 8.5.

Figure 8.5. The VendQuest template with mock content and HTML removed.

You'll notice right away that all the question prompts were removed, except one, What is your
favorite Color? The other question prompts were classified as mockup since they and the
row that contained them were identical with respect to one another. So, we only need one
surviving question prompt template to serve our needs.

The Business Object

Since this book focuses primarily on XMLC development and less so on Enhydra programming,
we haven't stressed business and data object construction. But let's take this opportunity to
describe a possible business object that we'll rework to use Zeus in the next chapter.

QuestionnaireBO.java is the primary business object. Its responsibility is to furnish the
presentation object, QuestionnairePresentation.java, with a list of question objects. The
presentation object will decompose the list, using XMLC and DOM methods to match questions,
types of questions, and choices with the appropriate DOM HTML template.

Building the question objects at the business layer means you can later swap out the short term
implementation for a Zeus-based implementation later on.

 190

One of the helper objects, SC.java, shown in Listing 8.6, is responsible for collecting and
representing a single question that represents a single-choice question. Possible choices are
accrued in a linked list and then associated with a question prompt.

Listing 8.6 examples/business/SC.java

package examples.business;

public class SC {
 private String prompt;
 private java.util.List choiceList;
 private static final String TYPE = "SC";

 public SC() {
 this.choiceList = new java.util.LinkedList();
 }

 public void setPrompt(String p) {
 this.prompt = p;
 }

 public String getPrompt() {
 return this.prompt;
 }

 public String getType() {
 return TYPE;
 }

 public void addChoice(String choice) {
 this.choiceList.add(choice);
 }

 public java.util.List getChoiceList() {
 return this.choiceList;
 }
}

There are similar helper classes for multiple choice questions (MC), ranking questions (Rank) and
simple comment questions (Comment). For our purposes, we're going to populate a linked list of
questions with helper objects. The code fragment here is an example of how we instantiated and
populated a single-choice question within a business object.

public class QuestionnaireBO {

 private List questions;
 private Vendor vendor;

 public QuestionnaireBO() {
 vendor = new Vendor("Lutris Technologies");
 questions = new LinkedList();

 // SC question #1
 SC sc = new SC();
 sc.setPrompt("What is your role?");
 sc.addChoice("Engineer");
 sc.addChoice("Executive");
 sc.addChoice("Buttkicker");
 sc.addChoice("None of the above");

 191

 questions.add(sc);

We have the capability to create multiple questions of type SC and an unlimited mixture of types
of questions. There will be no restrictions on the number of questions the vendor may construct.
For example, the vendor might want to ask five single-choice questions only.

The VendQuest Presentation Object

We now have worked out enough about the business object to know where the data is coming
from and in what format. Now we need a strategy for extracting the templates we need from the
Questionnaire.html template, generated by the xmlc command. That template will be
populated by our presentation object with the vendor's questions.

Before we dig deeply into code, let's review what we're going to do with the question objects. First
of all, after extracting the mock content and its containing table information, the table template is
now whittled down to the minimum set of templates we need to format all the new questions and
their associated choices or text fields. What we're going to do is

1. add new content to the row template,
2. clone the template, remove the id attribute, and
3. append the cloned row to the table.

For each question, we're going to extract the question prompt. We'll then use the template row
identified by the PromptRow id attribute to first add the question "What is your role?"

If you look at the PromptRow table row, you'll see that it contains a cell that spans the two
columns and contains the id attribute PromptCell. XMLC turns that id into the method
setTextPromptCell(), which we can use to update the template cell with a new question
before cloning it and appending the question to the table as a new row. Again, since all the
question prompts and the cells and rows that contain them look the same, there's no point in
preserving more than one of these rows as a template.

HTMLTableRowElement promptRow = qPage.getElementPromptRow();
qName = ("Q:" + new Integer(questionCount));
qPage.setTextPromptCell(qName + " " + sc.getPrompt());

The algorithm we'll use is explained in the pseudo-code here. The outermost loop iterates through
the linked list of question objects returned from the QuestionnaireBO business object. Each
question object is checked for its type (SC for single-choice, Rank for ranking question, and so
on.). When there's a match, the question-specific logic takes over, using its associated template
row.

QuestionnaireHTML qPage =
(QuestionnaireHTML)comms.xmlcFactory.create(QuestionnaireHTML.class);

HTMLTableElement table = qPage.getElementQTable();
QuestionnaireBO qbo = new QuestionnaireBO();
List qList = qbo.getQuestions();
int questionCount = 0; //Number each question asked.
for (Iterator i = qList.iterator(); i.hasNext();) {
 questionCount++;
 Object q = i.next();
 if (q instanceof SC) {
 ...template modifying code...
 for (Iterator j = choiceList.iterator(); j.hasNext();) {
 ...template modifying code...

 192

 } else if (q instanceof MC) {
 ...template modifying code...
 for (Iterator j = choiceList.iterator(); j.hasNext();) {
 ...template modifying code...
 } else if (q instanceof Rank) {
 ...template modifying code...
 for (Iterator j = choiceList.iterator(); j.hasNext();) {
 ...template modifying code...
 } else if (q instanceof Comment) {
 ...template modifying code...
 }
}
....final changes to the table and page
comms.response.writeHTML(qPage);

Once the list of questions have all been processed, the remaining code reattaches the orphaned
SubmitRow row containing the Submit and Reset buttons as the last row in the table.

HTML Controls

All the HTML-specific DOM extensions are defined by the package org.enhydra.xmlc.html.
Illustrated earlier, this XML/HTML language-specific implementation of the HTML sub-interface
greatly simplifies and makes type-safe the process of XMLC development for HTML documents.
Similar implementations of DOM sub-interfaces exist for WML in the open source Enhydra
XMLC.

Input Elements

Input elements are a strange animal, in that they are manifested as user interface widgets
depending on the indicted type, such as: "text," "password," "checkbox," "radio," "submit,"
"reset," "file," "hidden," "image," or "button."

Table 8.2 lists all the methods introduced by HTMLInputElement. Some are clearly specific to
particular manifestations of the input element depending on the indicated type. The method
setSrc(), for example, is dedicated to indicating the path to the location of an image.

Table 8.2. Methods of HTMLInputElement
blur() click() focus() getAccept()
getAccessKey() getAlign() getAlt() getChecked()
getDefaultChecked() getDefaultValue() getDisabled() getForm()
getMaxLength() getName() getReadOnly() getSize()
getSrc() getTabIndex() getType() getUseMap()
getValue() select() setAccept() setAccessKey()
setAlign() setAlt() setChecked() setDefaultChecked()

setDefaultValue() setDisabled() setMaxLength() setName()
setReadOnly() setSize() setSrc() setTabIndex()
setUseMap() setValue()

Clearly, we can take samples of methods such as getValue(), getValue(), and
setDefaultChecked() to dynamically query and define the state of the checkboxes and radio
boxes in the presented questionnaire. Using getType(), for example, we can query the template
to determine if we are working with a button or an image.

Radio and Check Boxes

 193

Recall from the previous section that the VendQuest presentation object,
QuestionnairePresentation.java, iterates through a list of question objects, accesses
question information in order to systematically construct a questionnaire form. The code that we're
about to walk through addresses the conversion of a single-choice question object into single-
choice question presentation logic for generating a list of radio box choices described by a
question prompt.

We've extracted the SCRow template from the Questionnaire.html source listed earlier in
Listing 8.1. The row contains two cells (or columns). The first cell is used for padding to shift the
options to the right. The second cell, SCInputCell, contains the template input control of type
radio. It is also accompanied by a text label that describes the radio choice. It is captured as a
easy-to-reference inline template by an HTML scan element, SCInputLabel.

<tr id="SCRow">
<td class="regField" width="30"><img src="../media/spacer.gif"
width="30" height="20"></
td>
<td id="SCInputCell" class="regField" width="325">
 <input id="SCInput" type="radio">
 Answer 1</td>
</tr>

Note the absence of name and value attributes in the input element. Because we're going to
generate those attribute-value pairs dynamically, there's no point in cluttering the template; unless,
of course, you want the storyboard to show some predicted behavior when demonstrated.

Before we begin processing the question object, the first task is to grab the templates represented
by the SCRow and SCInput identifiers. The code below uses the XMLC accessor methods,
getElementSCRow() and getElementSCInput(), to locate and record the nodes they
represent in the overall document DOM tree template.

//Grab the SC table row and input templates
HTMLTableRowElement scChoiceRow = qPage.getElementSCRow();
HTMLInputElement scInput = qPage.getElementSCInput();

Before we get to these templates, we first define a string that will be used for two purposes. One is
to preface the question prompt with a question number, such as Q1 or Q2. We're storing it in a
variable in order to also use it to set the name attribute shared by each radio type input element.
This will give us a convenient way of identifying the answer (to Q1) when the form is submitted
and processed by the question processor, QuestionProcessor.java.

if (q instanceof SC) {

 SC sc = (SC) q;
 qName = ("Q:" + new Integer(questionCount));

This code will generate a string such as Q2: What is your favorite programming
language? In the next fragment, we are bringing the question number string and the prompt
together, then using the accessor method generated by XMLC, setTextPromptCell(), to
easily update the question prompt template. It is then cloned and the clone is appended to the table.
We now have our first new dynamic content installed in the table template.

// Set the question prompt, clone it and append to the table.
qPage.setTextPromptCell(qName + " " + sc.getPrompt());
clonedRow = promptRow.cloneNode(true);
table.appendChild(clonedRow);

 194

Now we're ready to update the template row containing the radio box input element, clone it, and
stamp out a series of choices. In the following code, the first thing we do is reference the name
attribute in the input element with scInput.setName. Here we set the attribute with the Q1
value, uniquely identifying the collection of radio attributes as belonging to the same question
group. Then, as we extract each choice from the SC question object, we set their value attributes
with unique values to label the choice that will eventually be returned to
QuestionProcessor.java. The format we use to set the value attribute is
value=Choice:#, where # is the number assigned to each choice. We also use the XMLC
accessor method setTextInputLabel() to simultaneously label the current choice.

scInput.setName(qName);
// Grab the row containing the control and stamp out
// new rows for every choice encountered.
//
choiceList = sc.getChoiceList();
choiceCount = 0;
for (Iterator j = choiceList.iterator(); j.hasNext();) {
 choiceCount++;
 scInput.setValue("choice:" + new Integer(choiceCount));
 qPage.setTextSCInputLabel((String)j.next());

 clonedRow = scChoiceRow.cloneNode(true);
 table.appendChild(clonedRow);
}

Once the choice template is populated with a new set of dynamic data and attribute values, the
entire row is cloned and the copy is appended to the table.

In this example, we've demonstrated the use of HTMLInputElement's setValue() and
setName() to dynamically name and identify the choices that are represented by radio-style
input elements. Since the only difference between the radio (SC) and check box (MC) templates in
terms of logic are the template id values and the setting of the input element's type, we've
sufficiently covered both types of questions.

Select/Option Menus

Perhaps the most complex row template in the VendQuest template represents the ranking
question. To make the best use of space, we're using option menus to represent each set of choices.
The array of option menus then represent a "ranking" from top to bottom. The user makes a choice
from each menu to indicate first, second, third choice, and so on.

Option menus are created by the combination of a single select element containing multiple
option elements. select can be instructed to allow single- or multiple-choice behavior. The
nice thing about option menus is that they conserve a lot of display space, featuring scrolling to
get to each option. Table 8.3 lists some of the methods that are supported by the
HTMLSelectElement DOM sub-class.

Table 8.3. Additional Methods of HTMLSelectElement
getLength() getMultiple() getOptions()
getSelectedIndex() getSize() setDisabled()
setMultiple() setSelectedIndex() setSize()

We've kept the features of this type of question relatively simple. For every possible answer, there
is an option control. Each set of options is contained within a select element. The markup
following fragment composes the row template, identified by the id RankRow:

 195

<tr id="RankRow">
<td class="regField" width="30" height="21"> <img
src="../media/spacer.gif" width="30"
height="20"></td>
<td class="regField" width="325" height="21">
 <select id="RankSelect" name="select">
 <option id="RankOption">Spring</option>
 <option class="mockup">Summer</option>
 </select>
 Choice #1</td>
</tr>

Our goal is to replicate this row for every one the ranking menus. If there are three items, there
will be three option menus, labeled "Ranking 1," "Ranking 2," and "Ranking 3," respectively. The
following code sets the table, so to speak, grabbing the row element, the select element, and the
option element templates.

HTMLTableRowElement rkRankRow = qPage.getElementRankRow();
HTMLSelectElement rkSelect = qPage.getElementRankSelect();
HTMLOptionElement rkOption = qPage.getElementRankOption();
rkRankRow.removeAttribute("id");
rkSelect.removeAttribute("id");
rkOption.removeAttribute("id");

After determining that we're working with a ranking question object, we extract the ranking
question and add it to the cloned question prompt template.

} else if (q instanceof Rank) {
 Rank rk = (Rank) q;

 //Get the Q # to prepend the prompt string with.
 qName = ("Q:" + new Integer(questionCount));

 //Set the prompt string.
 //Clone and add back to the table.
 qPage.setTextPromptCell(qName + " " + rk.getPrompt());
 clonedRow = promptRow.cloneNode(true);
 table.appendChild(clonedRow);

Here's where we get a bit tricky. Not necessarily clever, just tricky. For each choice, we're going
to eventually deliver an option menu. Repeating our goal, if there are three choices, there will be
three option menus.

This code picks off the choices, such as apples, oranges, and kiwis. It uses the rkOption
template, containing the option element, to add values, then make a copy by cloning it. Then,
rather than add it to the parent select element, we instead add it to a linked list of option
elements. optionNodes is the linked list.

choiceCount = 0;
choiceList = rk.getChoiceList();

for (Iterator j = choiceList.iterator(); j.hasNext();) {
 choiceCount++;

 value = (String)j.next();

 rkOption.setLabel(value);
 rkOption.setValue(value);

 196

 qPage.setTextRankOption(value);

 optionNodes.add(rkOption.cloneNode(true));
}

So we now have a set of orphan option elements stored in the linked list. We're ready for
building the select elements and adding these stored options. We're going to enter an iteration
that will loop once for each stored option. Each iteration will build one new RankRow containing
the select element, and append the options as children to the select element.

checkedCount = 0;
for (int m = 0; m < optionNodes.size(); m++) {

 checkedCount++;
 checked = false; // set flag for assigning "selected" opt.
 optionCount = 0;
 for (Iterator k = optionNodes.iterator(); k.hasNext();) {

 option = (HTMLOptionElement)k.next();
 optionCount++;
 if (!checked && (optionCount == checkedCount)) {
 option.setSelected(true);
 checked = true;
 } else {
 option.setSelected(false);
 }
 rkSelect.appendChild(option);
 }

With a select element populated with option elements, we now do some post processing,
setting the select element's name attribute and label. Finally we clone the row, appending it to
the table.

 //Set the Select's "name" attribute value
 rkSelect.setName(qName + ":" + (m + 1));

 //Assign a label to the option menu.
 qPage.setTextRankSelectLabel("Choice #" + (m + 1));

 //So now I have a full select with options.
 //clone it and append it.
 clonedRow = rkRankRow.cloneNode(true);
 table.appendChild(clonedRow);
}
//clear for next iteration, if another rank question comes up.
optionNodes.clear();

Error Checking

This template certainly introduces all kinds of scenarios for possible error conditions. Perhaps the
visitor gives two choices the same ranking. With server-side validation, we can send a highly
dynamic response that can:

• Include an textual error message indicating the problem.
• Deliver a presentation with only the ranking question. When the Submit button is selected,

the entire page is resent, rankings and all, for the user to double check for completeness,
deciding to either resubmit or resume answering questions.

 197

We'll demonstrate in the next chapter how to do server-side validation using this very example.

textArea

There are two types of text input controls. Using the input element with the type attribute set to
text, you can display a single line. For multi-line boxes, like the one we'll want to use in the
VendQuest questionnaire, HTML provides the textarea element.

Table 8.4 lists the methods introduced by the HTMLTextAreaElement class. With the column
and row-related methods, we can dynamically control the dimensions of the text area template.
With select(), we can select the text displayed in the text area control for easy deletion by the
user.

Table 8.4. Methods Introduced by HTMLTextAreaElement
getCols() getRows() select()
setCols() setRows()

After visiting the more complex algorithm we defined for the ranking question, the textarea
question, which we've called the Comment object, is relatively simple.

HTMLTableRowElement cmRow = qPage.getElementCommentRow();
HTMLTextAreaElement cmTextArea = qPage.getElementCommentTextArea();
cmRow.removeAttribute("id");
cmTextArea.removeAttribute("id");

First we fetch the table row containing the textarea element. Then we grab the node
representing the textarea template, storing it in cmTextArea.

} else if (q instanceof Comment) {
 Comment cm = (Comment) q;

 qName = ("Q:" + new Integer(questionCount));

 qPage.setTextPromptCell(qName + " " + cm.getPrompt());
 clonedRow = promptRow.cloneNode(true);
 table.appendChild(clonedRow);
 //
 cmTextArea.setName(qName);

 clonedRow = cmRow.cloneNode(true);
 table.appendChild(clonedRow);
}

Again, we first update the question prompt template with the Comment question, such as "How
can we improve on our booth for next year?" The textarea element is fetched from the template
and cloned. It's assigned a name with setName(), a method of the HTML.

Working with the Document Head

The class HTMLDocument holds everything there is to know about the markup page. How
pragmatic this information is for your application depends on your presentation strategy.
HTMLDocument defines methods that return an HTMLCollection of document objects
representing forms, links, images, and applets. An HTMLCollection is simply a list of nodes.

 198

At the top of the document resides the document's head element. Among other things, including
JavaScript, the head element contains the document's title element. The content associated
with the title element is usually presented in the browser's main window bar and is used as the
title in a history mechanism. The name of the title needs to be meaningful; because the page is
often referenced out of context to how the user got there. This is the case particularly if, for
example, it's a link referenced in somebody else's page.

For our needs in VendQuest, we're simply looking to update the document's title element.

String vendor = qbo.getVendor();
qPage.setTextVendorTitle("Questionnaire from " + vendor);

The preceding code first retrieves the vendor's name from the VendorObject, provided by
QuestionnaireBO.java. Then we take advantage of an id attribute, vendorTitle, that's
been placed in the document's title element. One approach to setting the title is to take
advantage of the HTMLTitleElement class, using the setTitle() method.

HTMLTitleElement pageTitle = qPage.getElementVendorTitle();
pageTitle.setText("Questionnaire from " + vendor);

Or, we can simply use the setTextVendorTitle() method, generated by xmlc.

The VendQuest Presentation Object

Now that we've examined key sub-algorithms and their respective strategies, let's take a look at
the entire listing in Listing 8.7. Although we could have delegated more complex tasks to helper
POs, for demonstration's sake, we went with a fairly flattened presentation object.

Listing 8.7 vendQuest/QuestionnairePresentation.java

package examples.presentation.vendQuest;

import examples.business.QuestionnaireBO;
import examples.business.SC;
import examples.business.MC;
import examples.business.Rank;
import examples.business.Comment;
import com.lutris.appserver.server.httpPresentation.HttpPresentation;
import
com.lutris.appserver.server.httpPresentation.HttpPresentationComms;
import
com.lutris.appserver.server.httpPresentation.HttpPresentationExceptio
n;
import java.io.*;
import java.util.*;
import com.lutris.xml.xmlc.*;
import org.w3c.dom.*;
import org.w3c.dom.html.*;

public class QuestionnairePresentation implements HttpPresentation {

 public void run(HttpPresentationComms comms)
 throws HttpPresentationException, IOException {
QuestionnaireHTML qPage =
(QuestionnaireHTML)comms.xmlcFactory.create(QuestionnaireHTML.class);

//Grab the overall table template, a.k.a. the Parent Node.

 199

HTMLTableElement table = qPage.getElementQTable();

//Grab the spacer row.
HTMLTableRowElement spacerRow = qPage.getElementSpacerRow();

//Grab the prompt row and cell elements.
HTMLTableRowElement promptRow = qPage.getElementPromptRow();
promptRow.removeAttribute("id");

//Grab the SC table row and input templates
HTMLTableRowElement scChoiceRow = qPage.getElementSCRow();
HTMLInputElement scInput = qPage.getElementSCInput();
scChoiceRow.removeAttribute("id");
scInput.removeAttribute("id");

//Grab the MC table row and input templates
HTMLTableRowElement mcChoiceRow = qPage.getElementMCRow();
HTMLInputElement mcInput = qPage.getElementMCInput();
mcChoiceRow.removeAttribute("id");
mcInput.removeAttribute("id");

//Grab the Rank table row, select and option templates
HTMLTableRowElement rkRankRow = qPage.getElementRankRow();
HTMLSelectElement rkSelect = qPage.getElementRankSelect();
HTMLOptionElement rkOption = qPage.getElementRankOption();
rkRankRow.removeAttribute("id");
rkSelect.removeAttribute("id");
rkOption.removeAttribute("id");

//Grab Comment
HTMLTableRowElement cmRow = qPage.getElementCommentRow();
HTMLTextAreaElement cmTextArea = qPage.getElementCommentTextArea();
cmRow.removeAttribute("id");
cmTextArea.removeAttribute("id");

//Assorted counters and placeholders.
HTMLOptionElement option;
List choiceList;
Node clonedRow = null;
int choiceCount;
int checkedCount;
 int optionCount;
 String value;
 String qName;
 boolean checked;

 //Instantiate the business object.
 QuestionnaireBO qbo = new QuestionnaireBO();

 //for Ranking questions (Select/Option elements).
 List optionNodes = new LinkedList();

 //Fetch the list of question objects from the business object.
 List qList = qbo.getQuestions();

 int questionCount = 0; //Number each question asked.

 for (Iterator i = qList.iterator(); i.hasNext();) {

 questionCount++;
 Object q = i.next();

 200

 if (q instanceof SC) {

 SC sc = (SC) q;
 //Set this string for prepending question prompts
 //with a number.
 // e.g., "Q3: What is your favorite bird?"
 qName = ("Q:" + new Integer(questionCount));

 // Deal with the prompt first. Update the template row.
 // Then clone it. Then add the clone back to the table.
 qPage.setTextPromptCell(qName + " " + sc.getPrompt());
 clonedRow = promptRow.cloneNode(true);
 table.appendChild(clonedRow);

 // Name the input element name attribute using the Q number.
 scInput.setName(qName);

 // Grab the row containing the control and stamp out
 // new rows for every choice encountered.
 choiceList = sc.getChoiceList();
 choiceCount = 0;
 for (Iterator j = choiceList.iterator(); j.hasNext();) {
 choiceCount++;
 scInput.setValue("choice:" + new Integer(choiceCount));
 qPage.setTextSCInputLabel((String)j.next());
 clonedRow = scChoiceRow.cloneNode(true);
 table.appendChild(clonedRow);
 }

 } else if (q instanceof MC) {
 MC mc = (MC) q;

 qName = ("Q:" + new Integer(questionCount));

 // Update the question prompt.
 qPage.setTextPromptCell(qName + " " + mc.getPrompt());
 clonedRow = promptRow.cloneNode(true);
 table.appendChild(clonedRow);

 // Name the input element name attribute using the Q number.
 mcInput.setName(qName);

 choiceList = mc.getChoiceList();
 choiceCount = 0;
 for (Iterator j = choiceList.iterator(); j.hasNext();) {
 choiceCount++;
 mcInput.setValue("choice:" + new Integer(choiceCount));
 qPage.setTextMCInputLabel((String)j.next());

 clonedRow = mcChoiceRow.cloneNode(true);
 table.appendChild(clonedRow);
 }

 } else if (q instanceof Rank) {
 Rank rk = (Rank) q;

 //Get the Q # to prepend the prompt string with.
 qName = ("Q:" + new Integer(questionCount));
 //Set the prompt string.
 qPage.setTextPromptCell(qName + " " + rk.getPrompt());

 201

 clonedRow = promptRow.cloneNode(true);
 table.appendChild(clonedRow);

 // grab the choices, build the option list, then
 // add to the select element.
 choiceCount = 0;
 choiceList = rk.getChoiceList();

 for (Iterator j = choiceList.iterator(); j.hasNext();) {
 choiceCount++;

 value = (String)j.next();
 // Be sure to avoid putting "selected" in the html
 // template... otherwise you either have to remember
 // to remove it, leave it ... probably just easier
 // to add it.
 rkOption.setLabel(value);
 rkOption.setValue(value);
 qPage.setTextRankOption(value);

 optionNodes.add(rkOption.cloneNode(true));
 }

 checkedCount = 0;
 for (int m = 0; m < optionNodes.size(); m++) {

 checkedCount++;
 checked = false; // set flag for assigning "selected" opt.

 optionCount = 0;
 for (Iterator k = optionNodes.iterator(); k.hasNext();) {

 option = (HTMLOptionElement)k.next();

 optionCount++;
 if (!checked && (optionCount == checkedCount)) {
 option.setSelected(true);
 checked = true;
 } else {
 option.setSelected(false);
 }

 rkSelect.appendChild(option);
 }

 //Set the Select's "name" attribute value
 rkSelect.setName(qName + ":" + (m + 1));

 //Assign a label to the option menu.
 qPage.setTextRankSelectLabel("Choice #" + (m + 1));

 //So now I have a full select with options.
 //clone it and append it.
 clonedRow = rkRankRow.cloneNode(true);
 table.appendChild(clonedRow);
 }
 //clear for next iteration, if another rank question comes up.
 optionNodes.clear();

 } else if (q instanceof Comment) {
 Comment cm = (Comment) q;

 202

 qName = ("Q:" + new Integer(questionCount));

 qPage.setTextPromptCell(qName + " " + cm.getPrompt());
 clonedRow = promptRow.cloneNode(true);
 table.appendChild(clonedRow);
 //
 cmTextArea.setName(qName);

 clonedRow = cmRow.cloneNode(true);
 table.appendChild(clonedRow);
 }
 //Append a spacer row for seperate questions.
 clonedRow = spacerRow.cloneNode(true);
 table.appendChild(clonedRow);
 }
 //And last, but not least,
 //let's append the Submit/Reset buttons row, so that it
 //appears at the bottom of the form.
 HTMLTableRowElement submitRow = qPage.getElementSubmitRow();
 clonedRow = submitRow.cloneNode(true);
 table.appendChild(clonedRow);
 table.removeChild(submitRow);

 //Now let's remove all of those template rows.
 table.removeChild(promptRow);
 table.removeChild(scChoiceRow);
 table.removeChild(mcChoiceRow);
 table.removeChild(rkRankRow);
 table.removeChild(cmRow);

 //Name the title and page title.
 String title = qbo.getVendor();
 qPage.setTextVendorTitle("Questionnaire: " + title);
 qPage.setTextVendorName(title);

 comms.response.writeHTML(qPage);
 }
}

There are other ways to accomplish the same task. This is the route we took.

One final note: In ProcessQuestions.java, for demonstration purposes, we've added code
that simply dumps the parameter names and their associated value(s):

for (Enumeration enum = comms.request.getParameterNames();
enum.hasMoreElements();) {
 name = (String)enum.nextElement();
 value = comms.request.getParameter(name);
 System.out.println("paramName: " + name + "[" + value + "]");
}

The results of answering all the questions from the questionnaire shown in Figure 8.4 are as
follows:

paramName: Q:5[I would love to see dancing bears.]
paramName: Q:6:3[oranges]
paramName: Q:4[The show is great.]
paramName: Submit1[Submit]
paramName: Q:6:2[apples]

 203

paramName: Q:3[choice:1]
paramName: Q:6:1[kiwis]
paramName: Q:2[choice:3]
paramName: Q:1[choice:2]

Working with JavaScript

JavaScript, or the use of it, has been responsible for much of the client-side dynamic behavior of
modern Web presentations. Its role ranges from the client-side validation of user-provided
information to supporting wild animations by Flash and the dynamic manipulation of browser
layers.

It has become a regular feature of emerging markup standards to specify bindings to JavaScript for
the purpose of client-side manipulations and processing. The new SVG standard from the W3C,
for instance, incorporates JavaScript bindings for supporting the client-side manipulation of
graphical objects, such as bar charts.

However, there's a small problem in the relationship of XMLC and JavaScript programming.
While the HTML implementation of the DOM specification does represent the SCRIPT element
node type, it does not recognize the JavaScript language other than as a text node. In other words,
there is no JavaScript DOM or DOM element:

<html>
<head>
<script id="passwordScript">
 <! script for checking the minimum length of a password goes
here. !>
</script>
</head>
<form>

We can take advantage of XMLC's support for HTMLScriptElement and the auto-generation of
the setTextPasswordScript() method, keying off the preceding id value, to perform a
wholesale replacement of the JavaScript contained within this <script> element.

Let's take a look at two approaches to solving the dynamic construction of JavaScript during
runtime operation.

Using Hidden Fields

There are generally three ways for Web applications to save information, such as session keys or
the session itself. This is an important topic in a world that is inherently stateless.

Hidden fields have been traditionally used to pass information from one page request to another in
order to maintain session state during a client transaction. Hidden fields can also pass additional
information when associated with a form's Submit button.

Hidden fields are also a way to squirrel away session information, alleviating the need for fancy
session failover schemes. This works for simpler application designs.

We can make use of HTML hidden fields to pass information that affects the behavior of a
document's JavaScript. In Listing 2.1 from Chapter 2, "XMLC Development," we're using a
simple JavaScript to verify that an administrator has entered in the minimum number of letters

 204

when creating their password. Hidden fields are created with <input>. They include only three
properties; namely name, type, and value. The value is passed with the hidden field:

<form name="loginForm">
<input type="hidden" name="passwordLength" value="8"
id="PasswordLen">
</form>

The JavaScript accesses the data in the hidden field with the following code:

<script language="javascript">
document.write("Required password minimum is:" +
document.loginForm.passwordLength.value
+ "
");
</script>

Listing 8.8 demonstrates how the input element's attribute value is accessed and updated. The
hard-coded value could just as easily have been fetched from a database.

Listing 8.8 Example of How to Pass Dynamic Information to a JavaScript Variable

package examples.presentation.ex2;

import java.util.*;
import com.lutris.xml.xmlc.*;
import com.lutris.appserver.server.httpPresentation.*;
import org.w3c.dom.*;
import org.w3c.dom.html.*;

public class HiddenFieldPresentation implements HttpPresentation {

 public void run(HttpPresentationComms comms)
 throws HttpPresentationException {

 HiddenFieldHTML hiddenPage =

(HiddenFieldHTML)comms.xmlcFactory.create(HiddenFieldHTML.class);

 //Fetch the input element, then update the "value" attribute.
 HTMLInputElement input = hiddenPage.getElementPasswordLen();

 input.getAttributeNode("value").setValue("16");

 comms.response.writeHTML(hiddenPage);
 }
}

As you might guess, there are other approaches to XMLC and JavaScript as well. Our next topic
involving merging multiple sub-documents together can also be applied to introducing runtime-
selected JavaScripts.

Generating Output

 205

At some point, a servlet or presentation object completes its manipulation of the DOM template.
It's then time to convert the DOM to an HTML (or XML) document and stream the markup as a
string back to the client that made the original HTTP request.

So far, in all the examples you've used writeDOM(). writeDOM() is a convenient method that,
among other things, supports URL encoding with session data required to preserve state from page
request to page request.

For Enhydra EAF-style presentation objects, writeDOM() is defined as a method belonging to

com.lutris.appserver.server.httpPresentation.HttpPresentationResponse

and the writeDOM signatures are

writeDOM(XMLObject)
writeDOM(OutputOptions, XMLObject)

For standard servlet development, as defined by

org.enhydra.xml.xmlc.servlet.XMLCContext

the writeDOM signatures are

writeDOM(HttpServletRequest, HttpServletResponse, OutputOptions,
XMLObject)
writeDOM(HttpServletRequest, HttpServletResponse, XMLObject)

So far, the examples have kept things pretty simple, not yet taking advantage of the class
OutputOptions to exert more control over the formatting of the DOM conversion. Before we
explore this option, let's explain what this means.

Complete control over the conversion of the DOM to a resultant string can be directed by the use
of the classes DOMFormatter and OutputOptions. DOMFormatter formats XML and
HTML DOM templates into documents. It relies on the class OutputOptions for the actual
control of the formatting. Both classes are part of the parent class org.enhydra.xml.io. With these
two classes, you can construct your own DOM-formatting class, called just before you use
writeDOM to stream back the resultant DOM.

Note

Often you'll see developers who've discovered the toDocument() method implemented by
HTMLObject and XMLObject. On the surface, the simplicity of this method makes it the
apparent choice for streaming back strings of HTML or XML as extracted from the working
DOM. Unfortunately, toDocument() simply calls DOMFormatter to format the DOM into
a string. And that's it. The problem with this is that it doesn't, for example, address features
such as the URL encoding of session information.

At the time of this writing, the pretty-printing options were not yet implemented by XMLC.

OutputOptions supports three fields for indicating which type of output document is to be
generated.

• FORMAT_AUTO— Constant indicating format should be determined automatically from
examining the document object.

http://org.enhydra.xml.io/

 206

• FORMAT_HTML— Constant indicating HTML format.
• FORMAT_XML— Constant indicating XML format.

The code below represents a simple use of OutputOptions and DOMFormatter to set
formatting and set the output document's encoding:

OutputOptions opts = DOMFormatter.getDefaultOutputOptions(doc);
opts.setFormat(org.enhydra.xml.io.OutputOptions.FORMAT_AUTO);
opts.setEncoding("ISO-8859-1");
writeDOM(opts, page);

The possible formatting options are relatively robust. To illustrate the list of possible formatting
actions, the following list was extracted from a DOM template Java class, generated by an xmlc
compilation. The -keep option was used to preserve the Java source file representing the DOM
template class:

fPreFormatOutputOptions = new org.enhydra.xml.io.OutputOptions();
fPreFormatOutputOptions.setFormat(org.enhydra.xml.io.OutputOptions.FO
RMAT_AUTO);
fPreFormatOutputOptions.setEncoding("ISO-8859-1");
fPreFormatOutputOptions.setPrettyPrinting(false);
fPreFormatOutputOptions.setIndentSize(4);
fPreFormatOutputOptions.setPreserveSpace(true);
fPreFormatOutputOptions.setOmitXMLHeader(false);
fPreFormatOutputOptions.setOmitDocType(false);
fPreFormatOutputOptions.setOmitEncoding(false);
fPreFormatOutputOptions.setDropHtmlSpanIds(true);
fPreFormatOutputOptions.setOmitAttributeCharEntityRefs(true);
fPreFormatOutputOptions.setPublicId(null);
fPreFormatOutputOptions.setSystemId(null);
fPreFormatOutputOptions.setMIMEType(null);
fPreFormatOutputOptions.markReadOnly();

So, it's unlikely that you will need OutputOptions for much more than setting the encoding
value and the mimetype. But it does come in handy for some unusual situations, such as WML
development. It turns out that some devices cannot handle the typical XML header in which
encoding is specified, so XMLC was enhanced with the capability to remove the encoding
specified in the XML prolog. This is done with setOmitEncoding(false).

Note

Pretty-printing has not been implemented yet. The best way to debug these pages is to save
the generated file (from the browser) and then run it through the Tidy program (check
www.w3.org for the C version; the Java version is included in Enhydra).

XHTML

XHTML is the W3C's reformulation of HTML to comply with XML and its requirements for
well-formed documents. The impact on XMLC development is mostly felt by the designers. ,
, and are now three different elements, because case sensitivity is introduced to
elements by the XHTML DTD. Here is a simple survey of some of the key distinctions between
HTML and its heir apparent, XHTML.

• Correctly nested elements

http://www.w3.org/

 207

HTML forbids the nesting elements that don't make sense inside other elements, but it
doesn't enforce them. For example, you can stick an img element inside a pre element.
You can also overlap b and i elements, such as Push or <i>pull to
open</i>. You can't do either of these with XHTML.

• End tags and empty elements

With HTML, you can use to list things, but you don't have to terminate with an
. You do with XHTML. Elements with no content, such as <hr>, are expressed
with a trailing /, as in <hr/>, which opens and closes this single tag.

• Case sensitivity

<a> and <A> have different meanings.

• Quoted attribute values

With HTML, you can get away with forgetting the quotes when expressing attribute
values. That's not allowed with XHTML.

• Attributes require values

HTML supports a number of Boolean attributes, which are attributes with no values. In
the example earlier, we used selected to indicate which option was selected by default.
In order to set this value, we were required to go through the HTMLOptionElement and
its setDefaultValue() method. With XHTML, <option selected> becomes
<option selected="selected">. We can therefore use standard DOM attribute
methods for setting values instead. Other examples include the following:

<select multiple> is now <select multiple="multiple>

<textarea readonly> is now <textarea readonly="readonly">.

• id for name attributes

XHTML replaces the use of the name attribute with the id attribute for dealing with
anchor elements within a page.

• Special characters

Whereas inserting a & in the middle of a string might work with HTML, it will require a
& in XHTML. XHTML places a higher reliance on CDATA for hiding scripts and
hidden values. With standard HTML, this was done using <!— comments. For example,
it's common to place JavaScript within comments. With XHTML, CDATA must be used:

script language="javascript">
<![CDATA[
 ...javascript here...
]]>
</script>

The good news is that XHTML should represent little impact on designers and developers, which
only makes sense because the effort behind XHTML is to make it more XML-compliant. Because
XHTML is an XML language, the idiosyncrasies of HTML-style development are virtually

 208

eliminated, paving the way for a blurring of the line between HTML markup and its integration
with other interesting XML languages, such as SVG.

Summary

XMLC programming doesn't sacrifice flexibility in order to support complete separation of Java
from markup languages such as HTML. Even within the flexible side of XMLC development, one
can choose to rely almost exclusively on DOM programming or, alternatively, minimize pure
DOM programming by relying heavily on XMLC utility methods and the supported DOM
extensions for HTML and WML provided by XMLC.

We've demonstrated a portion of the wide range of design strategies using HTML templates.
We've shown how to perform in-place updates of HTML templates with dynamically processed
data. And we've shown how to take multiple templates within a single questionnaire template and
turn it into a data-driven application for creating on-the-fly custom questionnaires.

In the process of presenting these examples, we've addressed the dynamic generation and
manipulation of only a small percentage of the available HTML controls and static elements. Our
hope has been to use the handful we selected in order to convey the flexibility and strategies for
maneuvering through a DOM template and accessing its sub-templates to rebuild the overall DOM
to address the application design goals.

As we'll explore in the next chapter, there are higher levels of XMLC flexibility and dynamic
design strategies to take advantage of.

 209

Chapter 9. Presentation Strategies
IN THIS CHAPTER

• A Presentation Architecture
• Assembling Composite Views
• Interface-Implementations for ASPs and Skins
• Internationalization
• Integrating Data Binding with XMLC
• Summary

It's one thing to manipulate isolated bits of HTML wrapped in a form. It's quite another to create a
presentation environment that orchestrates the interaction of multiple sub-views in a cohesive,
error-free manner. Take into account that each sub-view represents different contributors, data
sources, behaviors and policies, and you have quite a challenge.

The goal of this chapter is to address some key topics in the presentation architecture of larger
scale Web applications. In some ways, we will be setting the stage for the discussion of a real
presentation framework for Enhydra XMLC presented in Chapter 13, "Barracuda Presentation
Framework."

In this chapter, we will review the topic of event-driven application design and how it can be used
to organize ShowFloor presentation logic into a controller for vectoring client requests to the
appropriate presentation object.

We'll begin by discussing the BasePO strategy for defining a standard presentation object (PO)
abstract class and standard methods from which your application can be extended. As a low-level
presentation technology, XMLC does not support a standard event-model or a lot of pre-defined
presentation framework elements. The BasePO approach gives you a template from which to
work and develop a set of helper POs in a consistent manner.

We'll also address the topic of composite views, featuring discussions on server-side includes and
the more dynamically interesting use of importNode. Both have the capability to bring DOM
sub-documents together, simplifying the task of site maintenance and design rework. In exploring
support for multiple presentation personalities and localized presentations, we'll also review how
to use XMLC's capability to turn markup into multiple DOM implementations, all in support of a
single markup class interface.

Lastly, we'll close out our earlier discussion about Zeus and the VendQuest application begun in
the previous chapter. Zeus and XMLC are closely related in their capability to import markup into
a Java application. We'll show how to update the business object QuestionnaireBO to use Zeus
to establish a tight, DTD-defined binding between the business object and the vendor questions—
only this time formatted as an XML language.

A Presentation Architecture

Enhydra XMLC is a presentation technology that introduces new capabilities on top of DOM
development to make it possible to completely separate Java logic from HTML and XML markup.
It intentionally stops short of a presentation framework by virtue of the tasks left up to the
presentation architect and developer.

 210

The role of presentation frameworks is to do the following:

• Abstract the more mundane details of what transpires deep in the enabling presentation
technology.

• Support a set of standard interfaces and concepts for implementing a model for
presentations and presentation transactions. Common presentation concepts that are
supported address event handling, form validation, and integration of the presentation
with the data model.

This book ends with a discussion of Barracuda, a true presentation framework for XMLC
development. It represents an option for presentation development that you might find beneficial.
In the meantime, there's absolutely nothing to prevent you from diving into XMLC development
to get the Web presentation task done.

So, what are we left with? Lots of room to move in terms of custom strategies. This is both good
news and bad. But, no matter which way we go, we'll always have a complete separation of Java
from markup.

The Base Presentation Object

Enhydra developers often leverage the concept of a base presentation object, or BasePO. Not
surprisingly, the BasePO is an abstract class with many of the methods left for implementation by
the developer. As an abstract class, it defines an extensible signature that influences the design and
functionality of the helper presentation objects that are responsible for accessing the model to
generate page views. In effect, the BasePO approach supports a type of "delegated controller"
architecture, wherein each presentation object inherits the role of controller.

Per-page presentation objects are sub-classed from the BasePO class. What they inherit is a set of
methods that address event handling, session handling, user management, and runtime debugging.
If you are, for example, creating a Visitor screen, you would sub-class your Visitor.po from
the BasePO class.

Defining the BasePO as an abstract class gives you the flexibility to handle functionality that is
unique to your application. For example, a particular method might make sense to a typical HTTP
request for an HTML page view, but make no sense if the request is coming from a J2ME phone,
a "smart client" capable of handling its own presentation chores. In this case, you would add
methods that reflect the required interaction between J2ME and your application.

The BasePO Class

BasePO is designed as an abstract class with the methods listed in Table 9.1. It is declared as
follows:

public abstract class BasePO implements HttpPresentation

As you can see from the table, some aspects are particular to the ShowFloor application, but the
general structure is very portable to other applications. The entire BasePO.java listing is
described in Appendix D, "The Base Presentation Object."

Table 9.1. BasePO Methods
Method Returns
handleDefault() XMLObject
getComms() HttpPresentationComms

 211

getSessionData() ShowFloorSessionData
rerouteForContent() Void
run(HttpPresentationComms comms) Void
handleEvent(HttpPresentationComms comms) Void
handleLogout() XMLObject
getPage(String event) XMLObject
getApplication() ShowFloor
writeDebugMsg(String msg) static void

Let's take a look at some of these methods, describing each method's role in the ShowFloor
application:

• handleDefault()— When no event is specified along with the client request, this
method must be supported by the application. Its role is to return the XMLObject that is
the resulting page view.

• getComms()— Returns HTTPPresentationComms, containing everything associated
with the current HTTP request.

• run()— This is the familiar doGet() Enhydra EAF method required by every
presentation object that is ultimately responsible for handling an HTTP request. run() is
located by the Enhydra Multiserver, then invoked with the HTTP request.

The run() method, as defined by the BasePO class, looks for an event parameter and
then calls handle<EventName>. If the event parameter is not defined, then the
handleDefault() method is called in the child class.

• rerouteForContent()— This method detects the nature of the client making a
request. Is it a WML client? A J2ME client?

• getPage()— Using the event passed by the HTTP request, getPage() returns the
page requested by the HTTP request.

• handleLogout()— The user's session is deleted by this method, forcing the user to log
in again. Usually associated with a timeout:

• SessionManager sessionManager =
myComms.session.getSessionManager();

• sessionManager.deleteSession(myComms.session);
• getApplication()— This method returns the application object. Recall that the

application object contains information about the application's name, status (running or
stopped), logging channel, and its configuration file.

• writeDebugMsg()— Simple debugging method that uses the debug log channel to
write output to a multiserver log file when the DEBUG level is listed.

Flow of Control with BasePO

An HTTP request comes in, invoking a particular presentation object. The flow of control
continues as follows:

1. The run() method is invoked, which fetches the event parameter to determine whether
an event value has been provided.

2. run() invokes handleEvent() to process the request. Either handleDefault() or
handle<EventName>() is called.

3. The presentation object processes the event. If an error is detected during form validation,
the presentation object uses showPage() to update the current page's template
representation with error messages.

 212

4. If no errors are detected, the presentation object might choose to invoke
ClientPageRedirectException(<PO name>) in order to continue processing to
the next page.

All these pathways can be followed in the ShowFloor application source code, found on the book's
CD.

initSessionData()

Compensating for the Web's inherently stateless nature, the role of initSessionData() is to
initialize the hash table variable comms.sessionData that is used to pass session information
from request to request. Invoked from the run() method, this method sets the table for all session
data related to the particular page:

protected ShowFloorSessionData session = null;

protected void initSessionData(HttpPresentationComms comms)
 throws ShowFloorPresentationException

 this.myComms = comms;
 try {
 Object obj =
comms.sessionData.get(ShowFloorSessionData.SESSION_KEY);

 //If session data found, save it in a private data member
 if (obj != null) {
 this.session = (ShowFloorSessionData) obj;
 } else {
 // No session data was found; create a new session data
instance
 this.session = new ShowFloorSessionData();
 comms.sessionData.set(ShowFloorSessionData.SESSION_KEY,
 this.session);
 }
 } catch (KeywordValueException ex) {
 throw new ShowFloorPresentationException("Trouble initializing
user",
 ex);
 }
}

SESSION_KEY is a hash key used to associate the session information with the particular client.
With a session variable in hand, you now have the capability to save session from page to page.

Tracking Session

The class ShowFloorSessionData, found in ShowFloorSessionData.java, is an
application-specific, developer-defined class containing everything from the session key used to
retrieve the session object related to the application, to all methods related to setting and retrieving
bits of session information. This might include the visitor's name and login status (for My
ShowFloor). The BasePO code fragment that follows shows, in part, how
ShowFloorSessionData is used to store and retrieve business objects (for example, vendor)
to and from sessionData:

import com.otterpod.showfloor.business.Visitor;
import com.otterpod.showfloor.business.Vendor;
import com.otterpod.showfloor.business.Booth;

 213

private Visitor visitor = null;
private Vendor vendor = null;
private Booth booth = null;
private int AUTHORIZATION = ShowFloorConstants.VISITOR;

public class ShowFloorSessionData [
 proc void setVendor(Vendor vendor) {
 this.vendor = vendor;
 }
 proc Vendor getVendor() {
 return vendor;
 }
 public void setUserAuth(int auth) {
 this.AUTHORIZATION = auth;
 }
 public int getUserAuth() {
 return AUTHORIZATION;
 }
}

Elsewhere in the code, when a new HTTP request has been received, you simply recover the
existing Vendor object with a call to

Vendor vendor = getSessionData().getVendor();

Authorization levels are established elsewhere in the ShowFloor source tree, in a class we've
defined as ShowFloorConstants. They are as follows:

public static final int VISITOR_USER = 0;
public static final int MYSFA_USER = 1;
public static final int VENDOR_USER = 2;
public static final int ADMIN_USER = 3;

handleEvent()

The run() method uses handleEvent() to begin processing HTTP requests for its child
presentation object. As stated earlier, if no event type is detected, it simply invokes the
presentation object's handleDefault() method and lets the rest of the PO take it from there.
HandleEvent(), of the BasePO.java abstract class, appears as follows:

public void handleEvent(HttpPresentationComms comms) throws Exception
{

 String event = comms.request.getParameter("event");
 XMLObject returnDoc = null;

 try {
 if (event == null || event.length() == 0) {
 returnDoc = handleDefault();
 } else {
 returnDoc = getPage(event);
 }
 comms.response.writeDOM(returnDoc);

 } catch (Exception e) {
 throw new Exception("Exception turning DOM template:" + e);
 }
}

 214

If an event value is detected with the request, then getPage(<EventName>) is called, which
builds and calls the more targeted handle<EventName> method. The presentation object should
have a method that matches the generated handle<EventName> acting as a simple "listener" for
the event.

For example, the method handleBrowse() is generated from the following URI request:

showFloor/ListVendor.po?event=browse

where the ListVendor is the targeted ShowFloor presentation object and the event is browse.
Of course, the example is not a true event type, an event that is represented as a Java class. Instead,
we're literally reading a string with predefined significance.

As you can see, handleEvent() is also responsible for streaming the DOM template back to the
client with writeDOM().

getPage()

This method makes use of the Java reflection API to construct and then invoke a method that
incorporates the name of the event. This approach gives you the capability to more easily extend
the application with event-driven pages without having to expand the definition of the BasePO:

public XMLObject getPage(String event) throws Exception {
 try {
 Method method = this.getClass().getMethod(toMethodName(event),
null);
 XMLObject thePage = (XMLObject) method.invoke(this, null);

 return thePage;
 } catch (InvocationTargetException ex) {
...

toMethodName(), also a part of the BasePO, constructs the method, prepending handle to the
event name.

Note

As you can see, this approach to indicating events is a bit primitive, relying on the recognition
of strings. In Chapter 13, you'll see how Barracuda uses true Java classes to represent event
types.

Assembling Composite Views

Now that the Internet has had some time to evolve since it really started to roar in the mid-90s,
familiar patterns of portal-style Web pages have emerged. Pages of developer sites, online
financial services, news sites, and corporate and nonprofit sites typically contain a recognizable
collection of headers, footers, main windows, page-context navigation bars, or a global top
navigation bar of site-wide menu categories.

Each sub-page or sub-view represents areas of different rates of change with respect to monthly,
weekly, or daily maintenance. Some sub-views might represent entirely different data sources.
And each sub-view might be managed by a different set of individuals, policies, or data sources,

 215

depending on how the project is organized. And finally, the sub-view might change according to
role-based permissions, reflecting who the client visitor is—you, me, or the boss.

For instance, a header view might be purely driven by the automatic generation of ad content,
posted according to the nature of the ad transaction (for example, posted every third page view). A
main window sub-view might be entirely handcrafted by a newsroom of individuals, looking
forward to automatically-generated pages of current news.

Enhydra XMLC supports a number of strategies for assembling composite views from multiple
sub-views or pages.

Strategies for Composite Views

When designing and building a site that makes extensive use of headers, footers, and navigational
bars, the last thing you want to do is recreate these elements with every page you create. Instead,
the ideal is to create each element once, then reference them from within the current document.
There are good reasons for doing this, including reducing the impact of change if you need to do
such tasks as the following:

• Update the navigational bar with a new menu item.
• Change the header to reflect the hosted company in the ShowFloor application.
• Add new compelling graphics and/or behaviors to portions of each page, without putting

the rest of the page at risk for errors.
• Build a library of common sub-documents, such as search objects or member login

objects.
• Import from a library of HTML documents containing JavaScript.
• Load template implementations that are sub-document specific, instead of the entire page.

We'll discuss the use of the XMLC -generate option to separate DOM template
implementations from their interface in the next chapter.

There are at least two approaches you can take to support the efficient design of multi-part
documents requiring headers, footers, and navigational bars: SSI and composite view integration.

SSI

In Chapter 7, "The xmlc Command," we introduced the xmlc command option -ssi for server-
side includes. In reality, the more appropriate term for this feature is compile-time includes
because real server-side includes rely on runtime support from the Web server. XMLC SSIs are
addressed during xmlc compilation, incorporating each referenced sub-document. They are not
applicable at runtime. But the format of the server-side include markup conforms with standard
server-side format:

<!—#include virtual="../media/TopBanner.ssi"—>

The following markup shows how .ssi files are referenced from inside its host markup. For
replacement to occur during compilation, the xmlc command must be used with the -ssi option
in order for the compile-time includes to occur:

<html>
<head>
<title>Air Sent: Customer Login</title>
<link href="../media/airsent.css" rel="styleSheet" type="text/css">
</head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF"
vlink="#800080">

 216

<form action="Login.html" method="POST">
<input type="HIDDEN" name="event" value="login">
<!—#include virtual="../media/TopBanner.ssi"—>
<!— Main Layout —>

<!— Main Window Table goes here —>

<!— End Main Layout —>
<!—#include virtual="../media/Footer.ssi"—>
</form>
</body>
</html>

An example of Footer.ssi is shown in Listing 9.1. Note that it is a subset of typical markup
because the form, body and html elements are already specified in the host HTML file.

Listing 9.1 Footer.ssi

<!— Begin Footer —>
<table width="100" border="0" cellspacing="5" cellpadding="0"
height="74">
 <tr>
 <td width="60"><img src="../../media/otterPodLogoXsmall.gif"
width="35" height="35"></
td>
 <td width="83" class="footerFont" valign="top"><a href=
"http://www.otterpod.com/
about.html" target="away">About
 SFA and OtterProd Productions</td>
 <td width="2" class="footerFont" valign="top"><a href=
"http://www.otterpod.com/
dogshow.html">Watch
 for TheDogShow, an OtterPod Production, 11 June 2003</td>
 <td width="1" class="footerFont" valign="top"><a
href="http://www.otterpod.com/
bitbucket.html">Give
 us your feedback</td>
 </tr>
 <tr>
 <td width="60"> </td>
 <td width="83"><img src="../../media/spacer.gif" width="120"
height="1"></td>
 <td width="2"><img src="../../media/spacer.gif" width="120"
height="1"></td>
 <td width="1"><img src="../../media/spacer.gif" width="120"
height="1"></td>
 </tr>
</table>
<!— End Footer —>

At first, this feature might appear to be limited to simply economizing on the inclusion of content
that doesn't change very often. SSIs are ideal for Web applications that remain relatively static
over a one-to-three year lifecycle. They're not so ideal for portals that require changes in units like
hours.

However, a great deal of value is still here because you are minimizing redundant markup.
Changes made to a header.ssi file are propagated to any other markup file that includes that
header.ssi file. However, to cause that propagation, you must re-compile all the affected files.

 217

SSIs and XMLC's Runtime Auto-Class Loading

A SSI strategy can be made quite a bit more dynamic when combined with XMLC runtime
features. A clever system can be designed to take advantage of the runtime auto-class loading
feature of XMLC.

By enabling the auto-class loading feature in the runtime XMLC environment, SSI changes can be
made, for instance, once every night, causing the rebuild of all affected markup, and therefore the
DOM templates.

This approach improves on other systems that do performance-costly runtime checks for loading
new content. However, if an SSI file is used throughout an application, the first users of the
system will detect a discernible performance impact. But, this only affects the users who first
cause the auto-class loading to take place. After this event, there is no further performance delay.
In addition, this approach is not very efficient for sub-views that change frequently, such as
advertisements that constantly rotate or are subject to complex contractual terms.

There are other effects in terms of how your production system is coordinated. Again, it goes back
to the nature of your Web application and the staging environment (of building new DOM
templates leveraging SSIs) that you are willing to build.

Runtime Composite View Integration

Let's discuss a strategy for building composite views (of sub-views) using the capability of DOM
programming to make copies from multiple DOM trees and import them into target DOM
templates.

In many cases, what you really want is the capability to grab markup for different sources at
runtime, reducing the need to rebuild the entire presentation environment. More significantly,
what you really want is the capability to make runtime decisions about which sub-views to
incorporate and when, based on the user's push of a button or selection of a menu item.

Figure 9.1 represents a typical composite view that you might encounter at a site offered by your
bank or credit card company. The topmost menu is a category navigation bar, used to organize
macro tasks within the Web application. Depending on the nature of the site, categories take on
different meanings, such as a product company that promotes its "products," "services," and
"news."

Figure 9.1. Typical menu-driven Web presentation.

 218

In Figure 9.1, the vertical context navigation bar represents the topics that pertain to the currently
selected category, Bill Payment. With Payment History selected, the main window is presenting
the content associated with the visitor's payment history.

Let's review what is happening behind the scenes in the application's presentation logic to support
the interaction of these three sub-views:

1. The user clicks on the main category of Bill Payment. Steps 2, 3, and 4 immediately occur.
2. The context navigation bar is updated to reflect the pre-built sub-view of bill payment

options.
3. The main category window is replaced with a view that highlights the Payments button,

indicating it's the working category.
4. The main window is updated with general information about payment features.
5. The user clicks on Payment History.
6. The main window is updated with payment history information.

Clearly, some of these actions can be handled by JavaScript development. We'll rely on server-
side Java to take care of the bulk of these tasks.

importNode and XMLC

One approach you might take to manage all these views is to take advantage of the
importNode() method of the DOM API. This will give you the capability to dynamically build
the resultant DOM template presentation from multiple DOM classes that you load dynamically.

With importNode(), you can take advantage of the DOM API's capability to extract sub-
documents as represented in different DOM template classes and import them into another DOM
template document. Actually, this is a "read" copy behavior because you cannot legally relocate a
sub-tree from one DOM into another.

 219

Figure 9.2 illustrates this strategy. For SFAPresentation.java, the composite view consists
of the three general sub-views we discussed earlier; namely, a main window, a category
navigation bar, and a context navigation bar. This strategy uses importNode() to copy the
tables contained in three other DOM templates, marked by their respective id attributes,
CategoryTbl, ContextBarTbl, and MainContextTbl. The copies are then placed in the
table SFA.html, which acts as the layout table for the overall view.

Figure 9.2. Strategy for extracting three tables from separate DOM templates.

Figure 9.3 represents the DOM view of the importNode manipulation, showing the importation
of the MySFA-specific context bar from the DOM template, generated from
MySFAcontextBar.html, to the DOM template represented by SFA.html.

Figure 9.3. How importNode() copies MySFAContextBar's table into
SFA.html.

 220

The point of this strategy is to give your presentation logic the capability to choose tables from
any number of available DOM templates, based on where the visitor is in terms of the navigational
situation within SFAPresentation.java. Potentially, you could insert all the possible table
representations of, for instance, the MySFA category, into a single HTML file and therefore a
single DOM template, then select them based on their id attribute value.

Listing 9.2 shows the presentation logic used to load each DOM, copy the sub-views represented
by each table, and append them to the layout table.

Listing 9.2 SFAPresentation.java

package examples.presentation.ex5;

import java.util.*;
import com.lutris.xml.xmlc.*;
import com.lutris.appserver.server.httpPresentation.*;
import org.w3c.dom.*;
import org.w3c.dom.html.*;

public class SFAPresentation implements HttpPresentation {

 public void run(HttpPresentationComms comms)
 throws HttpPresentationException {

 //Grab the DOM Template that represents the compositive view's
layout
 SFAHTML mainPage =
(SFAHTML)comms.xmlcFactory.create(SFAHTML.class);

 //Grab each DOM Template, representing each view.
 MySFAcontextBarHTML contextBarView =
(MySFAcontextBarHTML)comms.xmlcFactory.create(MySFAcontextBarHTML.cla
ss);
 MySFAcategoryBarHTML categoryBarView =

 221

(MySFAcategoryBarHTML)comms.xmlcFactory.create(MySFAcategoryBarHTML.c
lass);
 MySFAMainIntroHTML mainWindowView =
(MySFAMainIntroHTML)comms.xmlcFactory.create(MySFAMainIntroHTML.class
);

 //Grab the locations in the host table that we're going
 //to hang the new content from.
 HTMLTableCellElement catBarCell =
mainPage.getElementCategoryBar();
 HTMLTableCellElement conBarCell = mainPage.getElementContextBar();
 HTMLTableCellElement mainWinCell =
mainPage.getElementMainWindow();

 //Pluck the table that we want from each page.
 //importNode() just makes a copy of the node.
 Node catBarNode = mainPage.importNode(categoryBarView.
getElementMySFACatTbl(), true);

 Node conBarNode = mainPage.importNode(contextBarView.
getElementMySFAConTbl(), true);
 Node mainWNode = mainPage.importNode(mainWindowView.
getElementMySFAMainConTbl(),
true);
 //Attached the copied nodes.
 catBarCell.appendChild(catBarNode);
 conBarCell.appendChild(conBarNode);
 mainWinCell.appendChild(mainWNode);

 comms.response.writeHTML(mainPage);
 }
}

In order to focus on the task of importing nodes, Listing 9.2 forgoes the conditional logic of
determining tables to import based on the visitor's position relative to the overall navigational path.
Figure 9.4 displays the visible results of this integration.

Figure 9.4. The resulting page after integrating three DOM template views into one.

 222

SSIs Versus importNode()

It's probably self-evident that the flexibility of using this importNode strategy is greater than
accomplishing the equivalent with server-side includes. Although a similar effect can be
accomplished by having DOM templates of pre-integrated views, the flexibility of importNode
makes a great deal of sense when applied to highly dynamic news portals, for instance.

The use of importNode() does introduce a performance overhead. Some of this can be
offset with a combination of pre-compiled composite views, isolating the need for using
importNode() to deal with highly dynamic components, such as advertisement views that are
often subject to creative contractual terms such as being displayed every third page view.

As with much of our discussion of XMLC strategies, the sky is the limit regarding the integration
of strategies that you can use. Typically, the tradeoffs involve upfront pre-configuration that
stresses the stage-setting XMLC compilation process against the performance-impacting
flexibility of runtime sub-view integration.

Interface-Implementations for ASPs and Skins

Up to this point, we've painted a generally one-to-one mapping of pages to DOM templates. It's
now time to break that pattern and demonstrate one of the more intriguing capabilities of XMLC
to introduce a flexible approach to presentation polymorphism.

Many business models, including the ASP model we're using for ShowFloor, require the
capability to reuse individual pages with different personalities. The ASP business model makes
sense when a minimum amount of labor is required to support each new client.

A bank that delivers financial applications to its member banks wants to give their members the
capability to show their own fingerprint, or brand, to their end users. Some of this presentation
customization might even remove all traces of the parent bank's originating role, making it appear
to patrons of the child bank that the application is a feature only provided by the one bank.

 223

Also, an increasingly popular feature of Web applications is to offer a selection of skins to the
client. This has caught on particularly with trendy, highly customizable Web sites. Using
cascading stylesheets can address some of this presentation polymorphism, but it's limited to a
relatively small set of features, such as font, font colors, and background colors.

To support the capability to build the application presentation logic once, but have it generate in
the form of many presentation identities, XMLC provides built-in support for the UML bridge
pattern from the Gang of Four's (Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides)
book Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley, 1995).
Access to it requires the use of the xmlc command line options -generate both and -
implements.

The bridge pattern, shown in Figure 9.5, reflects the use of an interface class to define a pattern or
signature for a particular class of HTML, WML, or XML page. One of these classes might
represent a standard registration page, a login form, or a report page. The page's interface
signature is represented by the auto-generated getElement<attributeValue> and
setText<attributeValue> methods created when the xmlc compiler is run. With that
interface signature defined, all subsequent DOM implementations must support those methods.

Figure 9.5. The Gang of Four's bridge pattern.

A page's implementation is the DOM template that is specific to a particular design of the HTML
page. Two implementations can differ, for example, by the placement of images, HTML controls,
or the language. How an individual page is implemented is up to the designer and developer, but it
must support the established interface.

What are the implications of taking this approach to presentation development?

• Multiple implementations of a page can represent multiple skins of the same page. The
nature of the skin goes well beyond the capabilities of simply pointing to a different
cascading stylesheet. For instance, static buttons might be replaced with more dynamic
rollover capability.

• Multiple implementations can represent different page layouts of the same HTML or
WML elements with respect to each other.

• A page can be implemented that is identical to the original reference implementation page,
but in a different language.

• A page's interface assures conformance to the dynamic requirements. In other words, a
page interface class introduces compile-time checking to prevent introduction of runtime
errors.

• Compile-time checking is enforced by the presence of the interface class, ensuring that
each page implementation supports the interface and therefore the id attributes and their
xmlc-generated methods. The end result is the addition of a layer of error checking that
will reduce the occurrence of runtime errors.

 224

Perhaps the most interesting implication of separating interface from presentation is the capability
to continually rework presentations, ensuring that they conform to the interface, and add them to
the pool of available presentations for runtime execution. The use of runtime class loading
combined with clever uses of the reflection API can make this absolutely dynamic, requiring no
changes to the presentation logic.

Figure 9.6 illustrates the creation of a "pool" of page implementations that could be used by the
ShowFloor application to, for instance, load a vendor-specific information request page that
reflects the branding (for example, colors, images, wording) of individual vendors. In this case,
we're loading the IBM-specific implementation of this generic information request page.

Figure 9.6. Selecting the IBM-branded page at runtime in ShowFloor.

Note

As Nick Xidis, longtime XMLC supporter, and others have pointed out, there's a discernible
pattern of pages to different types of Web sites. Registration pages, for example, tend to
follow a particular flow that can be captured as a standard interface, then implemented to
reflect the desired design. This offers a real approach to project architects for enforcing
standard interfaces for different types of page patterns.

Generating Multiple Implementations

Let's walk through the process of using the xmlc command to generate a single DOM template
interface and two DOM implementations that support that interface. The implementations will
differ in how the resultant HTML is expressed in terms of layout. Their differences can be seen in
Figure 9.1. What do these implementations have in common?

• They have the same id attributes associated with the same elements. Therefore, they
share the same interface as generated by xmlc.

How do these implementations differ?

• The layout of the DOM tree differs based on the design layout of the HTML, background
colors, non-id attributes of the table (for example, thicker borders). In other words, a
different skin. This could be done in reaction to the visitor configuring their
MyShowFloor profile by selecting from different look and feel configurations, such as
"cool," "hot," and "extreme."

The sequence of steps to build the interface and implementations begins with:

 225

xmlc -keep -generate both Question.html

The -generate both option instructs xmlc to create two files:

• Question.java— an interface file
• QuestionImpl.java— an implementation file

QuestionImpl.java implements the interface described in Question.java.

At this point, you have what you need to begin development of the presentation servlet. This
initial implementation can be used as a reference implementation to begin application
development because the Java logic that will be created will be the same no matter which
subsequently-generated DOM template implementation is loaded and manipulated. The only
implementation-specific code in the presentation servlet deals with determining which
implementation to load.

To create two more implementations that use the same interface in Question.java, the HTML
designer would probably do something like load the original HTML file into GoLive or
Dreamweaver and make the layout or language changes as required. Then, the developer would
take the reworked HTML and apply the xmlc command:

xmlc -keep -implements classname Question_IBM.html
xmlc -keep -implements classname Question_Lutris.html

The -implements option instructs XMLC to use the interface represented by its class name and
use it to ensure that the generated implementations representing Question_IBM.html and
Question_Lutris.html conform to the interface. Errors occur if any of the ids have been
changed in terms of omission or changed attribute values.

Note

If your use of -implements is causing an error, it could be because of the xmlc command's
inability to locate the interface class generated earlier. The solution can probably be found by
ensuring that your classpath contains the location of the interface class file.

Loading and Executing an Implementation

Now that you have your two implementations, let's take a look at Figure 9.7 and see how their
manifested look and feel change when loaded and rendered by QuestionPresentation.java.

Figure 9.7. Two implementations of HTML files supporting the same id attributes.

 226

One or the other implementation's DOM template is loaded using xmlcFactory.create(),
depending on conditions tested by the surrounding logic.

The capability to define a standard page interface that is supported by multiple implementations
reflects the beauty of a fully object-oriented view of building Web applications. With every
resource represented as classes, many things become possible, including the capability to support
complex aggregations of pages, yet exert full control over their behavior and interactions. XMLC's
view of HTML pages as DOM template classes makes all this possible.

Internationalization

Internationalization, like security, is often a left-for-later discussion. XMLC, however, benefits as
an open source project by the fact that the members are from across the world, where highly
localized applications, many of which come from the United States, are a must.

As usual, there are a number of ways to approach internationalizing your XMLC presentations:

• Create a separate HTML template for each locale supported.
• Create one HTML template and substitute all text in the template during runtime with the

localized equivalent.
• Both of the above, depending on the situation.

As you read the preceding list, you probably saw some issues right away. First, if you are building
an application that must satisfy the language requirements of a worldwide community, then the
first option is pretty daunting. It might be easy to implement using an interface/implementation
strategy, but any changes that you might make to the layout of the page will cause a huge ripple
effect throughout the other pages. In other words, your designers would have to go through each
page, one by one, and make the necessary changes. This strategy is probably more workable if, for
example, you are the state of California and you have mandated that the State Web site support
both Spanish and English.

 227

The first option becomes even more daunting when you are responsible for a Web application that
must serve different devices, such as WML and cHTML, as well as standard HTML.

The second option scales better because, when changes are required, you need only modify the
one HTML document. However, this introduces the performance overhead of replacing every
localizable area with a string during runtime, and can prove too costly for complex Web sites,
such as news sites.

Note

Barracuda, the open source presentation framework for XMLC, cleverly blends the use of an
Ant taskdef and Java resource bundles to "spawn" localized DOM templates from a single
markup source file. This is discussed in some detail in Chapter 13. The good news here is that
Barracuda's localization capability can be used as a standalone module if you choose to forgo
the other Barracuda modules.

Our discussion has by no means addressed all the possible strategies you can take. The next
section on JavaScript highlights just one strategy, proposed by David McCann of MindWork
Software in Vienna, Austria, that brings out one of many strategies for localizing your
presentations.

JavaScript and Internationalization

JavaScript is always a topic of discussion for localization because it lies outside the DOM API.
The solution usually involves DOM substitution of <SCRIPT> nodes for this, but that can get
messy when there is a lot of code.

As you'll see, the best strategy is usually structuring your JavaScript to meet XMLC halfway.
Consider the following:

<script id="validateScript" language="JavaScript">
<!—
function checkForm(form)
{
 var errorMsg = "";
 if(form.UserId.value == "")
 errorMsg += "Please input a valid user ID" + "\ n";
 // other validation code goes here ...
 if(errorMsg != "") {
 alert(errorMsg);
 return false;
 } else
 return true;
}
//—>
</script>

Now you don't want to have to substitute all this stuff on a per-locale basis, especially if
checkForm() is complex, and/or is required in lots of pages.

The first step would be to split up the validation code like this:

<script id="localizedScript" language="JavaScript">
<!—
 badUserIdStr = "Please input a valid user ID";
 // ... Other error strings etc ...

 228

//—>
</script>

<script id="validateScript" language="JavaScript">
<!—
function checkForm(form) {
 var errorMsg = "";
 if(form.UserId.value == null)
 errorMsg += badUserIdStr + "\ n";
 // ... other validation stuff ...
 if(errorMsg != "") {
 alert(errorMsg);
 return false;
 } else
 return true;
}
//—>
</script>

In this case you only need to substitute the localizedScript node. All other <SCRIPT>
elements in the same page referencing localized strings (or whatever) can be made locale-
independent.

To avoid cluttering up the HTML with in-line scripts, the following will do the job:

<script id="localizedScript" language="JavaScript"
src="js/localized.js"></script>
<script id="validateScript" language="JavaScript"
src="js/checkForm.js"></script>

The advantage here is that browsers can cache the scripts. Reuse of the script fragments avoids
runtime inclusion or error-prone cutting and pasting into multiple files. It also reduces the
deployed code size of your application jar files. However, it still doesn't address the fact that you
can't dynamically create a JavaScript entry in the jar file at runtime.

An approach that addresses runtime localization uses the fact that the src attribute is a URL, and
not a static filename. So the src URL for the first fragment can be a presentation object as well:

<script id="localizedScript" language="JavaScript"
src="LocalizedJavaScript.po"></script>
<script id="validateScript" language="JavaScript"
src="js/checkForm.js"></script>

The presentation object LocalizedJavaScript.java simply needs to return JavaScript
instead of HTML/XML:

public class LocalizedJavaScript implements HttpPresentation {
 public void run(HttpPresentationComms comms) throws
HttpPresentationException
 {
 Locale loc = LocaleUtil.getPreferredClientLocale(comms);
 try {
 // Output localized strings for use in static scripts
 // referenced by the containing PO.
 StringBuffer buffer = new StringBuffer(1024);
 buffer.append("badUserIdStr = \ "");
 buffer.append(LocaleUtil.getText(loc, "javascript.badUserId"));
 buffer.append("\ ";\ r\ n");

 229

 // More internationalized strings ...
 buffer.append("\ ";\ r\ n");
 //Make sure we set the correct content type and length
 comms.response.setContentType("text/javascript");
 comms.response.setContentLength(buffer.length());
 comms.response.getOutputStream().println(buffer.toString());
 comms.response.flush();
 } catch(Exception ex) {
 ErrorHandler.handle(ex);
 }
 }
}

You can use POs to address localization in all kind of creative ways.

Integrating Data Binding with XMLC

You might be wondering why, if we have already described how XMLC can be used to build a
dynamically generated questionnaire presentation, we would want to discuss the back end
component. The reason is that this provides an excellent opportunity to discuss the role-based
differences of XMLC and Zeus, a data binding framework, and both Enhydra.org projects. Folks
on the mailing list often ask about the differences, so let's complete the VendQuest discussion and
flesh out a few distinctions.

Note

JAXB is Sun Microsystem's XML Binding API, similar to Zeus. In fact, Zeus incorporates
JAXB, so how is it different? Perhaps the single most interesting enhancement is that Zeus
makes it possible to generate Java classes without requiring the JAXB framework. The benefit
is that there is no version dependency on any framework—JAXB, Zeus, or otherwise. Zeus-
generated classes are completely autonomous, requiring only a SAX-compliant parser, not a
Zeus or JAXB framework.

In Chapter 8, "HTML Presentations," we used Enhydra XMLC running in an Enhydra EAF
environment to update a VendQuest markup page that is presented as the vendor-specific
questionnaire. The environment required that the design be highly dynamic, updating the template
with new questions if the vendor chooses to update the input XML question file. Our goal in
choosing Zeus reflected in part our desire to accomplish the following:

• Validate the XML file, ensuring a well-formed document that conforms to an XML
language definition.

• Parse the XML file and bring it into the VendQuest application.
• Bind the input data in a way that makes the use of XMLC and the generated presentation

DOM template easier.

Validating and Parsing the XML

In a trade for providing an incredibly flexible runtime feature to the vendor, the application will
need to take steps to ensure that the vendor generates an input document that conforms to a
prescribed format. An ill-formatted input file could result in hours of delay before the desired
questionnaire is put into operation.

http://enhydra.org/

 230

This is where you want to take full advantage of XML's language-defining attributes. You want a
well-formed document, as well as content that conforms to a grammar that will simplify the design
and implementation of your processing logic.

The DTD that we used to create the VendQuestXML dialect, listed in Listing 9.3, supports three
types of questions: SC (single choice), MC (multiple choice), and comment (text answer).

Listing 9.3 ./src/showFloor/VendQuest/VendQuest.dtd

<!ELEMENT Questionnaire (Question+)>
<!ELEMENT Question (Prompt, Choice+, Default)>
<!ATTLIST Question type (MC|SC|comment) #REQUIRED>
<!ELEMENT Prompt (#PCDATA)>
<!ELEMENT Choice (#PCDATA)>
<!ELEMENT Default (#PCDATA)>

The DTD describes a language that supports the capability to describe one or more Question
elements, each question containing the prompt What is the favorite letter?, and one
or more choice elements A, B, C. Optionally, one of the choices can be listed as the default answer.

It should be obvious that this DTD can become much more complex and powerful, but for our
purposes, we'll keep it simple.

Using Zeus for XML Data Binding

The selection process for finding the optimal XML manipulation tool was a bit daunting. Certainly,
Enhydra's support for XSLT could handle our needs, but the goal for this book was to limit the
number of programming languages necessary to build Web presentations to one—Java. JDOM,
Xerces, and SAX were other obvious options, but I was hoping to find something a little more
high-level to avoid having to resort to a lot of low-level DOM programming.

Ironically, the perfect choice comes from another Enhydra project called Zeus. Zeus is located at
zeus.enhydra.org, where it is chaired by its founder, Brett McLaughlin, co-developer of JDOM
(www.jdom.org) along with Jason Hunter. Zeus is sometimes described as a Java-to-XML data
binding tool. As this label doesn't necessarily imply, Zeus supports bi-directional interaction
between Java and XML documents:

• Turns Java objects into XML
• Turns XML into Java objects
• Presents XML language-specific methods for accessing and manipulating XML content.

Zeus reads a DTD document to generate a Java object that supports the language described by the
DTD. This represents the act of binding Java to XML. The relationships of elements to other
elements or attributes to elements, all described by the DTD, are captured in the behavior and
structure of the generated Java object. In other words, the targeted XML language's grammar is
now represented in Java with classes that describe, as Brett likes to put it, "the constraints of the
document."

Let's review the bi-directional nature of Zeus data binding, namely marshaling and unmarshaling:

• Marshaling—This is the process, described by Zeus, of generating an XML document
from Java using the Java object created by Zeus.

• Unmarshaling—This is the process of reading an input XML document and populating
Java objects with its content. The content can now be manipulated.

http://zeus.enhydra.org/
http://www.jdom.org/

 231

Unmarshaling is the strategy we are interested in for VendQuest. It will give us the capability to
read the document written in VendQuestXML and present its contents to the VendQuest
application. A future feature that we might consider adding to VendQuest is a friendly forms-
based HTML editor tool with which the vendor can manage their VendQuest XML document. But
for now, direct editing of the XML file will have to suffice.

The selling point for me was Zeus' capability to present the contents of the XML document with
Java methods that were generated and specifically tuned to the DTD. All the other technology
options were generic DOM representations at best. With Zeus, I can use XMLC-like, generated
setter and getter methods, such as getChoiceList() or question.getType().

There is a great deal more to learn about Zeus' methodologies and features. However, you have
enough to move forward with your immediate needs. Be sure to consult zeus.enhydra.org for more
details about this up and coming technology innovation.

Generate Binding Logic with Zeus

Let's examine how to generate the logic that you'll need in order to populate a Enhydra business
object with the unmarshaling logic it will need to serve the needs of the presentation layer. The
strategy is to first download and build the Zeus environment. You'll use the DTD to generate the
Java classes. The following instructions will generate the binding, marshaling, and unmarshaling
logic, which you can then test against the questionnaire XML file before migrating to the Enhydra
environment:

1. Download the Zeus source distribution and build it by executing the
provided ./build.sh or ./build.bat files.

2. Set your classpath to include the following. These instructions assume that you installed
the Zeus distribution under /Zeus on Unix/Linux:

CLASSPATH=/Zeus/lib/dtdparser113.jar:/Zeus/lib/jdom.jar:../Zeus
/lib/ xerces.jar:/Zeus/
build/classes:/Zeus/samples/output

or, for Windows,

setCLASSPATH=\ Zeus\ lib\ dtdparser113.jar;\ Zeus\ lib\
jdom.jar;\ Zeus\ lib\
xerces.jar;\ Zeus\ build\ classes;\ Zeus\ samples\ output

3. Compile TestDTDBinder.java with the first of the following Java commands:

cd /Zeus/samples
javac -d /Zeus/build/classes TestDTDBinder.java

4. The next two steps will first generate a collection of source code files representing the
Java interface classes and their associated implementation classes. The DTD file is all
Zeus needs to create these bindings. The second step will then turn the source files into
Java classes that you'll use later on:

javac samples.TestDTDBinder -file=q2.dtd
javac output/*.java

You are now ready to migrate all the classes you need over to the Enhydra environment:

http://zeus.enhydra.org/

 232

1. Place the jars located in Zeus/lib (namely jdom.jar, optional.jar,
dtdparser113.jar, and xerces.jar) in the Enhydra classpath,
$ENHYDRA_HOME/lib.

2. Copy the source and class files under /Zeus/samples/output into the business
directory:

cp /Zeus/samples/output/* $MYAPPROOT/examples/business

You now have everything you need to rock and roll inside the Enhydra environment.

Building the Business Object

It's important to take advantage of the multi-tier philosophy of Enhydra development. So we're
going to focus on the business layer to use the Zeus-generated binding logic to return the values
required by the presentation layer.

Let's take a look at the Java interface for the element <Questionnaire> generated by Zeus,
seen in Listing 9.4. Some of the methods, such as addQuestion(), are not of much use until
you build a questionnaire generation tool, but we'll leave that as an exercise for the reader.

Listing 9.4 ./src/examples/VendQuest/

public interface Questionnaire {
 public static final String ZEUS_XML_NAME = "Questionnaire";
 public static final String[] ZEUS_ATTRIBUTES = { } ;
 public static final String[] ZEUS_ELEMENTS = { "Question"} ;
 public java.util.List getQuestionList();
 public void setQuestionList(java.util.List questionList);
 public void addQuestion(Question question);
 public void removeQuestion(Question question);

The interesting method is getQuestionList(). The business object can make this available to
the presentation object to loop through the list of questions, interrogating each one to methodically
build the output document template.

Aside from adding the read-only methods to the business object, there is now little for you to do,
other than bind the presentation logic to the business object methods. This was performed in
Chapter 8.

The only remaining chore is to update the Enhydra environment with the location of the
VendQuestXML files representing the questions of each vendor. With Zeus business objects in
place, these files can be read on-the-fly during runtime without interruption to the running SFA
application. You have succeeded in creating the most dynamic application possible.

Summarizing XMLC Versus Zeus

When I considered using XMLC to process the input VendQuest document, I began to see the
unique problem-solving applicability of Zeus. I couldn't use id attributes to generate accessor
methods, because there were multiple instances of each element, such as <Question>. As you'll
recall, id attributes guarantee a unique representation of each element it they are attributed to.

In general, XMLC has more dedicated features to support DOM templates that serve as the layout
manager for a Web presentation. Zeus is much more generic, moving the language- constraining
role of the DTD inside Java, where it can process XML-conforming language without the need to
recompile. The data it processes can be treated as a stream of a well-formed XML language, but

 233

formless in presentation structure. Combining the roles of XMLC and Zeus seemed to make the
perfect soup-to-nuts solution.

Summary

Once again, the name of the game in XMLC development and architectures is flexibility. XMLC
delivers flexibility at the cost of pre-defined, framework-like structure. Despite this characteristic,
XMLC never sacrifices its inherent capability to keep Java logic out of XML or HTML markup.

We've addressed the use of the DOM API's importNode() and XMLC's compile-time use of
server-side includes to address the flexibility that's required when a presentation is made up of two
or more sub-views. These very different approaches each come with their limitations, so the
decision will reflect the flexibility, or lack thereof, of your development and production
environment.

One of the more exciting aspects of XMLC development features the built-in bridge pattern for
separating implementations of the same markup interface, addressing the needs of ASPs,
localization, and modern sites that give their visitors a great deal of control with skins to select.

In our discussion of internationalizing your Web application, we've kept things relatively high-
level, because Java 2 Standard Edition is relatively internationalized to begin with. We also set the
stage for the discussion of the Barracuda Framework in Chapter 13, which features a very nice
localization mechanism worth considering.

 234

Chapter 10. Servlet Web Applications
IN THIS CHAPTER

• Servlets and Web Applications
• Portable Enhydra XMLC
• Building Web Applications with Enhydra 3
• Constructing the VendorCategory XMLC Servlet
• Deploying XMLC WARs on Lutris EAS 4
• Ant, the Java/XML Alternative to make
• Deploying an XMLC WAR on BEA WebLogic
• Summary

The Java 2 Enterprise Edition (J2EE) specification is taking on the magnitude of the old saying:
"Nobody ever got fired for buying IBM." From IT executives to line engineers, this alphanumeric
acronym is unquestioningly uttered as the baseline requirement for application server standards,
even though a servlet or Web container strategy is more than sufficient for solving most Web
application building needs.

This chapter will refrain from addressing human psychology and instead focus on how to employ
Enhydra XMLC as an alternative to JavaServer Pages in the construction and deployment of Web
presentations using J2EE platforms. Thanks to the defined divisions of the J2EE Blueprints, we
can restrict the focus to the J2EE component known as the Web application.

To establish XMLC's applicability to standard servlet and J2EE development, we'll address the
topics of Web application archives and the construction of XMLC applications in two J2EE
environments, Lutris EAS 4 and WebLogic 6.1. We'll also take this opportunity to explore the heir
apparent to the Unix make system, namely the XML-based Apache Jakarta technology, Ant. Ant
has been adopted by both the WebLogic and EAS platforms.

This chapter will alleviate the concerns of those who mistakenly believe that XMLC is an
Enhydra-only technology. XMLC has been engineered as both an integral part of Enhydra
application server technology as well as an easily portable presentation technology for Java servlet
environments. In fact, xmlc.enhydra.org was created just for the purpose of evolving and
advocating Enhydra XMLC as the servlet/J2EE platform de facto standard.

Servlets and Web Applications

The J2EE architecture defines three tiers in the J2EE environment. The back-end tier is for legacy
applications and databases. The client tier is where Web browsers, Web servers, and thin and thick
clients sit, making requests of the middle tier. The middle tier is where EJB and Web containers
reside. The Web container is the focus of this chapter.

The Web container execution environment is responsible for communicating with the outside
world, whether it's via TCP/IP sockets or HTTP. Web applications reside within the Web
container, consisting of servlets, JSPs, HTML, documents, images, and other presentation
resources. It is here where servlets incorporating XMLC technology also reside.

The Web container can operate independently of the rest of the J2EE environment. As
requirements may or may not dictate, it has access to enterprise beans in the EJB container and/or
other J2EE services, including JNDI, JMS, and JavaMail. More often than not, many will find that

http://xmlc.enhydra.org/

 235

simply having access to JDBC will accommodate most of their functional requirements for
connectivity to the back-end database tier.

Web Application Archive

It takes more than a collection of standard programming APIs to define a standard platform. The
other side of the equation addresses standard deployment, packaging, and installation constructs
that minimize the installation issues of deploying an application from one implementation of that
platform to another.

J2EE specifies a standard file structure for the arrangement of runtime logic components. The
Web application is organized and distributed as a Web Application aRchive (WAR) file. Along
with HTML documents, images, and other application resources, its standard sub-directory WEB-
INF includes an XML-based deployment descriptor file, Java classes, and libraries.

The WEB-INF directory is the name of the parent directory for these immediate servlet
components. It contains servlet components in the form of jar files or individual classes. Like a
manifest in a jar file, WEB-INF contains the metadata that describes the contents of this directory
as their relationship:

• /WEB-INF/lib/ for jar files
• /WEB-INF/classes for Java classes
• /WEB-INF/web.xml for the deployment descriptor
• / for JSPs and static content, such as HTML, WML, and media.

Supporting resources, such as applets, images, and static HTML pages sit at the same directory
level as WEB-INF.

WAR Files

Web applications can be processed by the Web container as a hierarchy of files on disk, or the
same collection of files captured in a single file, in the form of a jar-archived file. WAR is the
artificial name given to a jar file containing a Web application. The only visual distinction
between a jar and a WAR file is the .war extension.

The immediate benefit of this prescribed organization is that you can build a Web application on
one application server and easily transplant it to another. This becomes a handy feature when, for
example, business issues require the swapping of one application server vendor for another.

web.xml for Configuration

The web.xml file is the Web application's deployment descriptor, located immediately
underneath WEB-INF/. It is the XML document with all the configuration information required to
present the preferred configuration of the Web application to the hosting application server.

The information expressed in the deployment descriptor ranges from how the target servlet is
mapped to one or more URLs, to the parameters that are passed to it when the Web application is
loaded for execution. Table 10.1 lists some of the possible directives in a typical web.xml
deployment descriptor.

Table 10.1. Selected web.xml Elements
<servlet-
name>

Establishes a name for the servlet that can be referenced from
elsewhere within the file.

 236

<servlet-
mapping>

Maps the URLs to the servlet relative to the base path. Sub elements
are <servlet-name> and <url-pattern>.

<servlet-
class

Specifies the fully qualified pathname for the servlet.

<init-param> Lists initial parameters for the servlet, made available to the servlet
with the ServletConfig class.

<welcome-
file-list>

Lists names that eliminate the requirement that the visitor, for example,
explicitly include index.html or index.htm as part of the URL.

As we'll see later on, <init-param> is key to the enabling of Enhydra XMLC runtime features
such as dynamic recompilation and class reloading.

Portable Enhydra XMLC

Enhydra XMLC is a portable presentation technology. xmlc.enhydra.org is dedicated to spreading
the use of Enhydra XMLC across every Java application server platform that supports standard
servlet containers.

There are two key components to the portable Enhydra XMLC development kit. The first is the
XMLC distribution that is downloadable from xmlc.enhydra.org and is available with this book's
CD as well. The xmlc2.0.1 distribution contains the following three files in addition to an
extensive set of JavaDoc user documentation:

• ./bin/xmlc
• ./lib/xmlc.jar
• ./xmlc-config

xmlc is, of course, the XMLC command for compiling markup documents into DOM class
templates. xmlc.jar is composed of the DOM, HTML, WML, and XMLC classes you will need
to refer to from servlet applications. This includes the Xerces and Tidy parsers and DOM sub-
interfaces. It also contains the XMLC classes needed to support dynamic recompilation and class
loading.

xmlc-config is a setup script. Its role is to set up the XMLC development environment,
pointing to the Java JDK and the xmlc.jar.

XMLCContext for Web Application Servlet Development

XMLCContext was specifically created to assist with the development and runtime deployment of
HTTP servlets using an XMLC strategy. XMLCContext brings with it the capability to use
standard Enhydra XMLC features, including the following:

• Session URL encoding
• Dynamic recompilation
• Dynamic class reloading
• Runtime logging

Other than the convenience of developing in the friendly confines of the Enhydra application
server, there is little you sacrifice by deploying your Enhydra Web application on other Java
application servers, with one exception regarding the classloader implementation. The classloader
issue is discussed later in this chapter.

http://xmlc.enhydra.org/
http://xmlc.enhydra.org/

 237

NOTE

As many experienced Java developers will tell you, Java's classpath mechanism for locating
imported classes is both a blessing and a curse. Depending on the manner in which the
contents of xmlc.jar and your servlet platform overlap, you might have to juggle the
ordering of classes and jars in your classpath to successfully run XMLC servlets. This has
become more of an issue as developers take advantage of technologies from other open source
projects that use differing versions of overlapping technologies, such as xerces.jar, which
is used by a large number of technologies.

An instance of the XMLCContext object and the standard servlet ServletContext object are
allocated to a single Web application. XMLCContext builds upon ServletContext to access
important parameters located in the application's web.xml deployment descriptor file.

The following list describes the methods of the XMLCContext class. These methods support the
complete lifecycle of the care and feeding of a DOM class template. Their functions support
factory-based creation, development time debugging, and the formatting and writing out of the
resultant DOM tree.

This method creates an OutputOptions object for a document:

createOutputOptions(HttpServletRequest request, HttpServletResponse
response, XMLObject
document)

This method obtains the XMLCContext for the current application, creating it if it doesn't exist:

getContext(HttpServlet servlet)

This method returns XMLCContext.SessionURLEncodingMode:

getSessionURLEncoding()

This method gets the XMLC factory object associated with the context:

getXMLCFactory())

This method sets the session URL encoding mode and returns void:

setSessionURLEncoding(XMLCContext.SessionURLEncodingMode mode)

This method explicitly sets the XMLC factory and returns void:

setXMLCFactory(XMLCFactory factory)

This method outputs a DOM document object and returns void:

writeDOM(HttpServletRequest request, HttpServletResponse response,
OutputOptions
outputOptions, XMLObject document)

This method outputs a DOM document object and returns void:

 238

writeDOM(HttpServletRequest request, HttpServletResponse response,
XMLObject document)

Controlling XMLC Runtime Features with web.xml

getContext() is key to the configuration of the behavior of the XMLC runtime. It fetches
servlet parameter values as they are stored in the Web application's web.xml deployment
descriptor file.

In the following sample XML fragment, the web.xml sets parameter values to indicate that the
application is configured only for dynamic loading of new DOM class templates:

<web-app>
 <servlet>
 <servlet-name>VendorAdmin</servlet-name>
 <servlet-class>com.otterpod.vendor.presentation.admin</servlet-
class
 <init-param>
 <param-name>xmlcReloading</param-name>
 <param-value>reload</param-value>
 </init-param>
...

param-name: xmlcReloading

These parameter values influence the runtime behavior of the servlet to perform dynamic
compilation and class loading:

• off— No automatic reloading or recompilation (default).
• reload— Automatic reloading of modified class files.
• recompile— Automatic recompilation of classes that are out-of-date relative to their

source files and reloading of modified class files.

Auto recompilation is not a slam dunk outside of the Enhydra application server environment. The
reason is that the classloader mechanisms for different servers are different. And classloaders do
not reveal all the information that is required to support class reloading.

XMLC reloading/recompilation requires an adapter class, implementing

org.enhydra.xml.xmlc.reloading.ResourceLoader

for each classloader implementation it interacts with. XMLCReloadingFactory is the factory
class that creates instances of XMLC-generated class with automatic recompilation if the class is
out-of-date relative to a source file.

ResourceLoader is an interface definition that must be implemented for the target servlet
container, such as newer versions of Tomcat. The implementation of what XMLC calls a selective
classloader obtains the classpath that will be searched, and creates an instance of a classloader that
will load the re-generated DOM. Some have implemented this by grabbing the latest version of

org.enhydra.xml.xmlc.reloading.ClassEntry

from the Enhydra XMLC CVS source tree.

 239

By the time you read this, contributed implementations may be part of the distribution found at
xmlc.enhydra.org. You should check out this site for news before spending time on your own
implementation.

param-name: xmlcSessionURLEncoding

URL encoding is a technique that embeds information within the URL from servlet response to
HTTP request. The encrypted session ID is extracted from the HTTP request and used by the
servlet to query the environment about the particular session. Typically, URL encoding is used as
an alternative to tracking sessions with the use of cookies, the ultimate Internet kludge.

These parameter values specify the servlet's handling of session ID encoding:

• auto— Automatically enable session URL encoding as needed (default).
• always— Always enable session URL encoding. This does not work on most servers

because of conflicts in the uses of both cookies and URL encoding.
• never— Never enable session URL encoding.

The default setting auto works best across different possible application servers, turning on URL
encoding as needed.

param-name: xmlcLogging

The parameter values listed here dictate what runtime information XMLC logs. The value is a
space-separated list of one or more of the following values:

• INFO— Logs basic information about notable events, such as recompiling or reloading
classes.

• DEBUG— Logs debugging information. Mostly related to recompiling and reloading.
• STATS— Logs statistics information useful in debugging performance problems.

Currently writes information about each DOM that is written. This is especially useful in
looking at how much of a Lazy DOM has been expanded.

The default behavior of XMLC logging is set to INFO.

Building Web Application Servlets with Enhydra 3

In Chapter 5, "Enhydra, Java/XML Application Server," we discussed how the Enhydra
AppWizard presents the option to select from two types of servlet frameworks. One is the Enhydra
Application Framework, EAF. The other is the standard servlet 2.2 Web application framework or
Web application.

When you indicate to the AppWizard that you intend to build a Web application, a different
distribution of source and configuration files is created and the generated stub application takes on
a new appearance. If you are an experienced servlet developer visiting Enhydra for the first time,
you'll feel right at home.

Listing 10.1 shows how the stub application employs the use of the XMLCContext class
introduced earlier. We gave the AppWizard the project name of WebApp and the package name
example.

http://xmlc.enhydra.org/

 240

Listing 10.1 WelcomeServlet.java

package example.presentation;

// XMLC imports
import org.enhydra.xml.xmlc.servlet.XMLCContext;

// Servlet imports
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

// Standard imports
import java.io.IOException;
import java.util.Date;
import java.text.DateFormat;

public class WelcomeServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException
 {
 XMLCContext xmlc;
 WelcomeHTML welcome;
 String now;

 now = DateFormat.getTimeInstance(DateFormat.MEDIUM).format(new
Date());
 xmlc = XMLCContext.getContext(this);
 welcome = (WelcomeHTML)
xmlc.getXMLCFactory().create(WelcomeHTML.class);
 welcome.setTextTime(now);
 xmlc.writeDOM(request, response, welcome);
 }
}

The statement

xmlc = XMLCContext.getContext(this);

fetches the <init-parameter> content contained in the web.xml deployment descriptor in
preparation for invoking the getXMLCFactory() method.

Invoking the make command generates two new high-level sub-directories: classes and
output.

./classes/example/presentation/RedirectServlet.class

./classes/example/presentation/WelcomeHTML.class

./classes/example/presentation/WelcomeServlet.class

./classes/Generated Source/example/presentation/WelcomeHTML.java

./output/boot.properties
./output/conf/bootstrap.conf
./output/content/index.jsp
./output/content/media/Enhydra.gif
./output/java.policy

 241

./output/lib/WebApp.war

./output/run
./output/run.bat

The final leg of the make session invokes the toolbox to generate the WAR file and WEB-INF
distributions. The distribution of the generated files into classes and content sub-directories makes
it particularly easy for the Enhydra toolbox to sort out the needed files and file types to construct
the WAR file and WEB-INF distribution:

exec "C:/jdk1.3/bin/java" -jar "C:/usr/local/enhydra3b1.1/tool/lib/
toolbox.jar" -archive
\
 -webArchive \
 -classpath ./classes \
 ./output/content \
 ./output/content/WEB-INF/web.xml \
 ./output/archive/WebApp.war

The build uses the project name to name the generated WAR file. Examining the contents of the
WAR file, the command jar -tvf WebApp.war generates the following:

index.jsp
media/Enhydra.gif
WEB-INF/classes/example/presentation/RedirectServlet.class
WEB-INF/classes/example/presentation/WelcomeHTML.class
WEB-INF/web.xml

Note

Despite the fact that the generated Web application is a legitimate servlet 2.2 implementation,
it is not quite ready for deployment on other application servers, such as Tomcat or BEA. The
reason has to do with the need for a specialized classloader enabling the auto-recompilation
feature of XMLCContext. This was discussed earlier in the section on XMLCContext.

index.jsp for <welcome-file>

Enhydra AppWizard automatically generates the index.jsp file in the initial source tree, despite
the fact that this is a servlet application configured for Enhydra XMLC development. If you take a
look at index.jsp, it's not particularly impressive, other than the fact that it is extensively
commented. Taking a look at the bottom of file you'll see the JSP directive

<%
 pageContext.forward("/redirect");
%>

This is Enhydra's approach to mapping the URL slash to a servlet name for a Web application.
Note that it's just a coincidence here that the servlet is called welcome and the deployment
descriptor element is also called <welcome-file>.

The reference to /redirect in index.jsp directs the application server to load the class
RedirectServlet.class. Listing 10.2 shows how RedirectServlet plays "hot potato"
by grabbing the request and its possible parameters and "redirecting" it to the servlet we're really
interested in, namely WelcomeServlet.

 242

This bit of trickery enables you to use the <welcome-file> mapping in the deployment
descriptor. <welcome-file> specifies the possible URL mappings that can be associated with
your servlet, such as the URL www.otterpod.com mapping to www.otterpod.com/welcome/.
Without this approach, the <welcome-file> directive in web.xml would have no effect.

Listing 10.2 Presentation/RedirectServer.java

public class RedirectServlet extends HttpServlet {

 /*
 * There is the only function needed in order to be a servlet
 */
 public void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException
 {
 StringBuffer redirect = HttpUtils.getRequestURL(request);
 int start = redirect.toString().lastIndexOf("/redirect");
 int end = redirect.length();
 redirect.replace(start, end, "/welcome");
 response.sendRedirect(redirect.toString());
 }
}

As you can imagine, the deployment descriptor for the Welcome stub application is relatively
simple. Listing 10.3 lists the contents of web.xml. First the two servlets, WelcomeServlet and
RedirectServlet, are named with <servlet-name> and associated with Java class names
they will represent using <servlet-class>. From there, the mappings of the URLs to each
servlet are established using <servlet-mapping> and <url-pattern>.

Listing 10.3 web.xml for the Stub Application

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app>
 <servlet>
 <servlet-name>welcome</servlet-name>
 <servlet-class>example.presentation.WelcomeServlet</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>redirect</servlet-name>
 <servlet-class>example.presentation.RedirectServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>welcome</servlet-name>
 <url-pattern>/welcome</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>redirect</servlet-name>
 <url-pattern>/redirect</url-pattern>
 </servlet-mapping>
</web-app>

So, what does all this accomplish? To put it simply, you've configured the application server to
launch the class example.presentation.WelcomeServlet when the URL
http://localhost:<port#>/welcome is sent from the client via HTTP.

http://www.otterpod.com/
http://www.otterpod.com/welcome/

 243

Constructing the VendorCategory XMLC Servlet

We're now at the point where it's time to demonstrate what's involved in deploying XMLC-driven
WAR applications from one environment to another. Let's construct a simple single-servlet Web
application that we can use to illustrate what kind of modifications are required to go from an
Enhydra 3 stub Web application to a relatively dynamic, real-world application. We'll then use this
example to show how to migrate from the venerable Enhydra 3 environment to the Lutris EAS 4
and BEA WebLogic application servers supporting the J2EE APIs.

VendorCategory is a screen, shown in Figure 10.1, created for the EventHostAdmin to
present the opportunity to select and set a default value that will be listed when creating vendor
booths. Elsewhere in the application, this default value will be assigned when the
EventHostAdmin is adding new vendors to the list of booth assignments.

Figure 10.1. The Set Default Vendor Web presentation.

This presentation is generated by the VendorCategory servlet. It loads the DOM class template
generated from the XMLC compilation of VenCat.html in Listing 10.4. The mocked-up option
rows are removed at XMLC compile-time by specifying the option -delete-class
"dummyOptions".

Listing 10.4 VenCat.html

<html>
<head>
<title>Vendor Default Category</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-
1">
<link rel="stylesheet" href="SFA.css" type="text/css">

 244

</head>

<body bgcolor="#FFFFFF" text="#000000" class="vendorHeading1">
<table width="80%" border="0" cellspacing="0" cellpadding="4"
align="center">
 <tr>
 <td class="vendorHeading1">Set Default Vendor Category</td>
 <td><img src="media/otterPodLogo.jpg" width="100"
height="100"></td>
 </tr>
 <tr>
 <td class="bodytext">This is the official list of Vendor Categories.
Select the default value that will be applied to all new vendors
 subject to getting
 overridden.</td>
 <td> </td>
 </tr>
 <tr>
 <td class="bodytext" valign="middle">
 <form name="form1" method="get" action="VenCat.html">
 Categories:
 <select id=vendorOptsMenu name="select" class="bodytext">
 <option id="vendorCategory" value="dummyA" selected>type
A</option>
 <option class="dummyOption" value="dummyB">type B</option>
 <option class="dummyOption" value="dummyC">type C</option>
 </select>
 <input type="submit" name="Submit" value="Go">
 </form>
 </td>
 <td> </td>
 </tr>
 <tr>
 <td class="bodytext" valign="middle">
 <div align="right">Current Default Category: <span
id=defaultVendorCategory> <span
class="defaultValue">UNASSIGNED</div>
 </td>
 <td> </td>
 </tr>
</table>
</body>
</html>

This document employs a single form containing three form objects (or HTML controls): Select,
Option, and Button.

In the servlet, we'll first update the vendor category list. The list will be hardcoded. In normal
practice, this list would be configured by the EventHostAdmin, a role introduced in Chapter 4,
"The ShowFloor ASP Application," and delivered by a business object, discussed in Chapter 5,
"Enhydra, Java/XML Application Server," to display the vendors that reflect the type of industry
show that they are hosting.

When the user makes a selection, you'll update the same page to indicate the current default value,
then redisplay the page.

The servlet logic shown in Listing 10.5 should reflect a familiar algorithm by now, having
reviewed it in Chapter 8. We take the first Option element, turn it into a template, clone the

 245

result, and append it as a child to the Select element. When the building operation is complete,
the template Option element is removed.

Listing 10.5 VendorCategoryServlet.java

/*
 * sfa
 * Copyright SAMS Publishing, Inc.
 */

package vendor.presentation;

// XMLC and DOM imports
import org.enhydra.xml.xmlc.servlet.XMLCContext;
import org.enhydra.xml.xmlc.*;
import org.enhydra.xml.xmlc.html.*;
import org.w3c.dom.*;
import org.w3c.dom.html.*;

// Servlet imports
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

// Standard imports
import java.io.IOException;

public class VendorCategoriesServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException
 {
 XMLCContext xmlc;
 VenCatHTML vendorC;
 //Hardcoded vendor categories
 String categoryList [] = { "Application Servers",
 "Databases", "Desktop Applications", "Open Source", "Imaging"} ;

 //Get the servlet context
 xmlc = XMLCContext.getContext(this);

 //Load the DOM template
 vendorC = (VenCatHTML)
xmlc.getXMLCFactory().create(VenCatHTML.class);

 //XMLC Access Method to retrieve the Select element.
 HTMLSelectElement catSelect = vendorC.getElementVendorOptsMenu();

 //Use another XMLC Access Method to grab the template option
element.
 HTMLOptionElement templateOpt = vendorC.getElementVendorCategory();
 //Clone it.
 //Enter a loop to stamp out options of categories.

 for (int i=0; i<categoryList.length; i++) {

 //Set the Option's content.
 vendorC.setTextVendorCategory(categoryList[i]);

 246

 // Set the value attribute to represent the category.
 templateOpt.setValue(categoryList[i]);

 //Make a copy of the template.
 Node clonedOpt = templateOpt.cloneNode(true);

 //Use the HTMLSelectElement "add" method to append
 //the new Option element.
 catSelect.add((HTMLElement)clonedOpt, null);
 } // end for
 // get rid of the Option template now that we're done with it.
 catSelect.removeChild(templateOpt);

 //Grab the URL parameter representing the Select element's name
 // to determine the chosen category.
 String select = request.getParameter("select");
 if (select != null) {
 vendorC.setTextDefaultVendorCategory(select);
 }
 xmlc.writeDOM(request, response, vendorC);
 }

}

We used AppWizard to create the initial servlet environment, choosing Web Application as the
application type. This type causes AppWizard to create an additional src sub-directory called
resources, which sits alongside the standard Enhydra presentation, business, and data
sub-directories. Controlled by the make file located in presentation, resource is intended
as the home for markup files and media, making it easy for the build environment to migrate these
files to the content portion of the output tree. After the content directory is populated, the make
process can then build the WAR file, a collection of files migrated from the directories and
subdirectories of contents and the classes.

The classes directory contains these files:\

RedirectServlet.class

VendorCategoriesServlet.class

VenCatHTML.class (DOM class template)

The files under the output directory contain the content files and directories, as well as the
resultant WAR file and Enhydra runtime-specific configuration file, log file, and start script:

./multiserver.log

./start

./archive/SFA.war

./conf/servlet/servlet.conf

./content/index.jsp
./content/media/otterPodLogo.jpg
./content/sfa.css
./content/WEB-INF/web.xml

 247

./work/sfa/_0005cindex_0002ejspindex.class

./work/sfa/_0005cindex_0002ejspindex_jsp_0.java

The last two files listed are the signature of the Tomcat environment and are of no concern to us.
Also, the servlet.conf file, specific to Enhydra 3, is ignored in the creation of the SFA.war
file.

Modifications

We had to make a number of modifications to the files and file contents of the servlet layout:

• /src/WEB-INF/web.xml— References to the welcome servlet were changed to
vendorcat. The servlet class was renamed from WelcomeServlet to
VendorCategoryServlet.

• /src/presentation— We renamed WelcomeServlet.class to
VendorCategoryServlet.class. Made internal changes to the class name as well
as adding our DOM template manipulating code. Reworked the filenames referenced in
Makefile, included those referenced in the resources directory.

Edited RedirectServlet.java, replacing the occurrence of servlet name /welcome
with the /vendorcat. This satisfies the Enhydra mechanism of using the index.jsp
to address web.xml's <welcome-file> configuration.

• /src/resources— Replaced Welcome.html with VenCat.html. Added the
associated stylesheet file, sfa.css.

Added the option -delete-class to discard HTML Option elements belonging to the
class dummyOptions. The make file in presentation was updated to reflect the name
changes.

You now have your SFA.war file, containing the VendorCategory Web application, ready to
deploy.

Deploying XMLC WARs on Lutris EAS 4

Lutris EAS 4 is Lutris Technologies' commercial version of the Enhydra Enterprise project for the
implementation of J2EE services. As might be expected, it too features XMLC development. It is
also the platform we will use in this book for the examples of cHTML, XHTML, and VoiceXML
development with XMLC. At the time of this writing, the DOM interface implementations for
these markup language standards is not implemented in Enhydra 3.

If you have had the opportunity to start using the Enhydra AppWizard, then you have probably
already experienced most of what it takes to establish a Web application in the EAS 4
environment. We'll take the next section to review the source tree generated by the EAS version of
AppWizard before showing the steps for taking our existing SFA.war and adding it to the EAS
platform.

Web Application Source Tree Under EAS 4

The following file hierarchy is created by EAS 4's AppWizard when Web Application is selected.
Much of the structure is familiar to EAF developers. input, presentation, business, and

 248

data directories are still used. To those who develop standard Web applications with Enhydra 3,
this listing appears even more familiar:

./build.xml

./readme.html

./input/boot.properties.in
./input/conf
./input/conf/bootstrap.conf.in
./input/java.policy.in
./input/run.bat.in
./input/run.in

./src/example/business
./src/example/data
./src/example/presentation/options.xmlc
./src/example/presentation/RedirectServlet.java
./src/example/presentation/WelcomeServlet.java
./src/example/resources/index.jsp
./src/example/resources/media/Enhydra.gif
./src/example/resources/Welcome.html

./src/WEB-INF/web.xml

The most significant difference with respect to Enhydra 3 Web applications is the replacement of
the make framework of make file and config.mk files with Ant's build.xml. Both of the
target J2EE platforms support this powerful new open source build and deploying utility. After
our review of Lutris EAS deployment is concluded, we'll spend some time with a short
introduction of Ant.

Initializing the EAS 4 Environment

Lutris EAS 4 goes much further than earlier Enhydra implementations to support both the
Windows and non-Windows environments. If you want a Unix/Linux-like environment on your
Windows environment, then you can take advantage of the companion Cygnus tools for creating a
Bash shell environment.

The next two sets of commands set up the runtime environment for Lutris EAS, particularly
addressing the CLASSPATH and compiler environments. At this point, we're assuming that you've
followed the instructions on the CD for installing Lutris EAS 4.

If you want to stick with pure Windows, then execute these commands:

cd lutris-eas4
setup.bat

For a Unix/Linux environment, or Windows with Cygnus Tools:

cd lutris-eas4
source setup.bash

With configuration now addressed, you can start the application server by finding the directory
/lutris-eas4/bin and executing the command

./multiserver

 249

When you see the message

InitializationManager,STATUS: All services loaded. Enhydra is up.

you'll know that the application server is ready to accept requests. You can now use the default
Web-based Admin Console to add your Web application to the server.

Adding the SFA.war to Lutris EAS

EAS features two administration consoles. We'll work with the baseline Web browser version. In
fact, this is an enhanced version of the Enhydra Admin Console that we introduced in Chapter 5.

Figure 10.2. EAS Web Admin Application and Connection Status Window.

To bring up the Admin Console, enter the URL http://<machine>:8001. To install the
WAR application, follow these steps:

1. Copy the SFA.war file into the directory lutris-eas4/webapps.
2. Click the Add button.
3. In the Add New Application/Servlet window, select the WAR radio button. This will

expand the existing dialog to include more WAR-specific parameters.
4. In the this dialog, give the value SFA to the fields Name and URL Prefix. In the text field

labeled Path To WAR File, enter the path

/lutris-eas4/webapps/

You're now ready to start the application. In the main window of the Admin Console, you can see
that SFA now appears in the list box. Click the Start button. If you encounter any problems, such

 250

as with the console's capability to find the path to the directory containing the WAR, just click the
Modify buttons to make changes to the configuration.

Note

After deployment, you should consider moving your images and static HTML pages where
the Web server can find them. Web servers are optimized for superior caching of static
resources. This leaves the dynamic portions of your applications, EAF or Web application
style, for the application server to process. This will improve the overall performance
characteristics of your application.

Now select the Connections tab to see how the WAR is going to be reached from the outside
world. You will see that the Admin Console automatically associated the WAR with a URL. You
can change this if you want by removing and creating a new connection using the Create button.
Selecting the indicated URL will launch the VendorCategory application.

Ant, the Java/XML Alternative to make

This might appear to be a strange place to introduce a new system for design and performing
coordinated builds of Java applications. But Ant, a sub-project of the Apache Jakarta Project,
happens to be the engine behind the build environment for both of the J2EE application servers
included with this book's companion CD, Lutris EAS 4 and BEA WebLogic 6.1. It's also only a
matter of time before the entire Enhydra project is Ant-based. Already, members of the
Enhydra.org community have contributed Ant-based build environments that are likely to replace
the existing Enhydra 3 system of make files.

Ant builds on many of the attributes of make, popularized by UNIX C development environments.
Both systems take advantage of target file modification timestamps of files, or files that are
required by other files. If no changes have been made to the file or the files upon which it depends
since the previous make or Ant session, then they are left alone. Clearly, this supports a more
efficient use of your computer's CPU, particularly if you've touched a couple of files in an
application environment represented by hundreds of files. These systems also make sure that files
are compiled that, although they have been untouched directly, are dependent on another file that
has.

But Ant goes a few steps further than make. First, it's a Java implementation, making it friendlier
to Java systems. Entire collections of Java files are sent to the compiler at once, rather than one-
by-one. Extending Ant with new features is a matter of sub-classing existing Ant classes, then
announcing the new functionality via an XML configuration file.

build.xml

Ant is an environment of pure Java and XML. Distinctively named build.xml files serve as an
instant clue that you're looking at an Ant environment. The build.xml file contains a project,
representing the series of tasks that have been selected and organized to build the project. Tasks
are built-in Ant logic representing the more common functions you would need in a Java
application-building environment.

• copy— Copies everything from files to directories.
• war— Generates a WAR file.
• jar— Generates a jar file.
• mail— Sends e-mail to individuals depending on the achievement of specified events.

http://enhydra.org/

 251

• cvs— Checks files in and out of a CVS version control system.

Both BEA and Lutris application servers extend Ant's default set of tasks with additional ones. As
you might expect, Lutris EAS incorporates an xmlc task:

<target name="xmlc" depends="prepare">
 <xmlc srcdir="${ dir.src} "
 sourceout="${ dir.xmlc} "
 packagedir="${ dir.package} /presentation"
 includes="${ dir.package} /resources/**/*.html"
 options="${ dir.src} /${ dir.package} /presentation/options.xmlc"
/>
</target>

This is an example of a target, which is a collection of one or more ordered tasks. Targets list the
dependencies they have on other targets using the "depends" attribute. The xmlc task lists
attributes that describe everything the XMLC compiler will need to build DOM classes, including
where to find the options.xmlc file.

A property is another element of the build.xml file. It supports the definition of name-value
pairs that are later referenced by targets and tasks. As shown in the following Lutris EAS example,
the property element can be used to name all the areas of the source build and deploy environment:

<!— Set up application values —>
<property name="project.name" value="SFA"/>
<property name="project.package" value="example"/>
<property name="project.version" value="1.0"/>
<property name="project.year" value="2001"/>

<!— directory locations —>
<property name="dir.package" value="example"/>
<property name="dir.classes" location="classes"/>
<property name="dir.input" location="input"/>
<property name="dir.java" location="${ java.home} /../" />
<property name="dir.src" location="src"/>
<property name="dir.output" location="output"/>
<property name="dir.project" location="."/>
<property name="dir.content" location="${ dir.output} /content"/>
<property name="dir.lib" location="${ dir.output} /lib"/>
<property name="dir.javadocs" location="${ dir.output} /javadocs"/>
<property name="dir.xmlc" location="${ dir.classes} /Generated
Source/"/>

The following target is given the name "prepare", which will be referenced as a dependency by
other targets, such as our earlier xmlc target example. This target plays the essential role of
creating directories that will serve as the destination locations for classes, resources, and WAR
files that are generated during the build:

<target name="prepare">
 <mkdir dir="${ dir.lib} "/>
 <mkdir dir="${ dir.content} "/>
 <mkdir dir="${ dir.classes} "/>
 <mkdir dir="${ dir.output} "/>
 <mkdir dir="${ dir.xmlc} "/>
</target>

 252

There's obviously a great deal more detail to the Ant environment that we're not going to cover
here. For more information, including the full set of built-in tasks, download the documentation
available at http://jakarta.apache.org/ant/manual/index.html.

For more information about platform-specific extensions to the ant command, consult the
respective documentation from the Lutris and BEA products.

Deploying an XMLC WAR on BEA WebLogic

BEA System's WebLogic application server dominates the data centers of enterprise IT. Chances
are that you or a colleague are WebLogic developers. We're going to spend this section explaining
how you can take an open source technology like Enhydra XMLC and offer an excellent
alternative to JSP presentation development for a leading commercial product. The
straightforward deployment of an Enhydra 3-built WAR should demonstrate the portable nature of
Enhydra and Enhydra XMLC technology.

Let's see what happens when we take our SFA.war file, containing the VendorCategory Web
application built by a 100% open source platform, and deploy it on top of an industry standard
platform with costs as far from open source as you can get.

WebLogic Installation

The Windows version of BEA's trial version of WebLogic 6.1 was downloaded from
http://www.bea.com for the purpose of this exercise. From the installation wizards, we chose
Server Only, indicating that we didn't want all the provided examples.

During the installation of WebLogic 6.1, you will be asked for a small set of configuration
parameters; namely, the administration domain name, the name of the server instance, and the port
the server instance will listen on. We chose to keep the configuration very simple (that is, on a
single Windows 2000 laptop as the target server). We provided the following values:

weblogic admin domain name: aptos
server name: nicole
listen port: 7001

Our WebLogic server will be called nicole, and will be managed within the domain name of
aptos. All references to resources under the local host must include the port number 7001, a
default value that you may override. The secure port, by the way, is 7002.

Server File System

There are a number of WebLogic server file configurations provided, including one that's pre-
configured with a number of simple servlet and enterprise application examples. For our purposes,
we're going to go straight to the configuration that was created in response to our earlier answers.

The root of the default WebLogic application server installation resides at
/bea/wlserver6.1/config. From this directory, you'll find such sub-directories as
examples, petstore, and the domain we're interested in, aptos. Under aptos, we have all
the configuration and startup scripts we need, as well as the applications directory, the
eventual site for the deployment of the SFA.war file:

./aptos/config.xml

http://jakarta.apache.org/ant/manual/index.html
http://www.bea.com/

 253

./aptos/logs/access.log

./aptos/logs/weblogic.log

./aptos/setEnv.cmd

./aptos/startWebLogic.cmd

./aptos/applications/certificate.war

./aptos/applications/DefaultWebApp

./aptos/applications/DefaultWebApp/images

./aptos/applications/DefaultWebApp/images/built_bea_web.gif

./aptos/applications/DefaultWebApp/images/redarrow.gif

./aptos/applications/DefaultWebApp/index.html

./aptos/applications/DefaultWebApp/WEB-INF

./aptos/applications/DefaultWebApp/WEB-INF/web.xml

config.xml

To install VendorCategory, you'll use the WebLogic administration console, because it
provides an interface that can accomplish the WAR deployment with a few button clicks. More
importantly, it updates the key file config.xml for you, avoiding the possibility of corrupting
the file and preventing the server from running at all. After it's been updated, the config.xml
file will contain the following additional content:

<Application Deployed="true" Name="sfa" Path=".\ config\ aptos\
applications">
 <WebAppComponent Name="sfa" Targets="nicole" URI="SFA.war"/>
</Application>

If you're new to WebLogic, I would highly recommend that you follow the steps that we take,
avoiding shortcuts that could delay this process and potentially lead to the necessity of having to
reinstall to get back to square one. And if you can resist whipping out your vi editor, then be sure
to make a backup copy of the file before proceeding. At that point, you're on your own.

Preparing the WebLogic Server for XMLC

As you might expect, it doesn't take much to launch the server. This is done by executing the
script startWebLogic.cmd, located just under the aptos directory. But before you do that,
you need to ensure that the XMLC runtime library of classes can be found by the WebLogic
server.

Take the following steps to set up WebLogic for an XMLC runtime environment:

1. Copy an instance of the xmlc.jar file, contained in the xmlc2.0.1 distribution, to the
lib directory, located just under /bea/wlserver6.1.

2. Change directories to the aptos directory. Copy startWebLogic.cmd to
myWebLogic.cmd.

3. Open myWebLogic.cmd for editing. Search for the string CLASSPATH. Append the
location of the xmlc.jar file to the end of the line that sets the CLASSPATH
environment variable so that it appears as

set CLASSPATH=.;.\ lib\ weblogic_sp.jar;.\ lib\ weblogic.jar;.\
lib\ xmlc.jar

4. Close the file.

Launching the WebLogic Server

 254

We're now set for launching the XMLC-ready WebLogic server. To do this, type the name of the
modified script from the Windows command line:

myWebLogic

The script will do a number of things. First, it will echo lines of its script as they are executed.
You should be able to see that the CLASSPATH is set with the reference to .\lib\xmlc.jar.
The script will ask you for a password, one that you decided on when prompted during the initial
installation.

When you see the following message, you'll know that the server is ready to accept requests:

<Notice> <WebLogicServer> <Started WebLogic Admin Server "nicole" for
domain "aptos"
running in Production Mode>

Deployment Through the WebLogic Server Console

With a running server, the server console can now be brought up. The following URL will invoke
the server console.

http://localhost:7001/console

The WebLogic Server Console is shown in Figure 10.3. The left frame contains an applet that
displays the server hierarchy, including servers, services and deployed applications. Under "Web
Applications," you will see two default applications.

Figure 10.3. Initial WebLogic Server Console.

http://localhost:7001/console

 255

To begin deployment, right-click on the Web Applications label. You'll see a pop-up menu. Select
Install a New Web Component.

The right frame of the server console is updated to indicate the types of files that can be uploaded.
At the bottom of the frame, you'll find an Upload/Browse dialog. Use it to find the SFA.war and
load it.

After this task is complete, you'll see (in Figure 10.4) that the SFA.war containing the
VendorCategoryServlet has been added to the Web application.

Figure 10.4. The WebLogic Server Console displaying a deployed SFA Web
application.

 256

Running the VendorCategory Servlet

At this point, the application has been loaded by the server, and all that remains is to make a
request to it with the following URL:

http://localhost:7001/SFA/vendorcat

This will bring up the application, looking very much like the version displayed in Figure 10.1.

XMLC for Ruby

As with any great technology, the concept of XMLC transcends the implementation
itself. As an example of this, a port of XMLC is connected to the Ruby programming
language, enabling the power of XMLC to be combined with the dynamic and
expressive nature of Ruby. Its authors sought to bring the decoupled nature of XMLC
from the Java world into their Web-based Ruby programming (where semi-equivalents
of JSP already exist).

Just as XMLC is the product of a group of great existing concepts combined with some
out-of-the-box creativity, the Ruby language is a creative meld of several great
technologies that came before it. Created by Yukihiro Matsumoto and now maintained
as an open source project at http://www.ruby-lang.org, Ruby has combined the extreme
object-orientation of Smalltalk, the practicality and power of Perl, and the best practices
from numerous other languages into one powerfully expressive language to which users

http://localhost:7001/sfa/vendorcat
http://www.ruby-lang.org/

 257

are often fervently devoted. It is available for free on the project Web site for a number
of platforms, including UNIX and Windows.

The Ruby XMLC port is available at http://sourceforge.net/projects/rubyx/.

Summary

Hopefully, you now have enough knowledge at your fingertips to understand the basics of
building portable XMLC Web applications. The different strategies range from building them on
the Enhydra 3 application server as WAR files; or simply building them on the target servlet/J2EE
platform of your choice, with the aid of the XMLC distribution (xmlc2.0.1.zip or
xmlc2.0.1.jar) from Xmlc.enhydra.org or the book's CD.

As a by-product of the development and deployment of the VendorCategory servlet, we have
addressed the topics of Web applications and the role of WAR files and their organization. We've
also introduced the emergence of Apache's Ant, an open source modern alternative to the
venerable but old-world make system.

http://sourceforge.net/projects/rubyx/
http://xmlc.enhydra.org/

 258

Chapter 11. Wireless Markup Presentations
IN THIS CHAPTER

• Wireless Domains
• Perusing the WML Language
• WML Development Environment, Kinks and All
• WML Template Generation with xmlc
• Device Detection
• The mySFA Vendor Notes Application
• VoiceXML
• Summary

It's now time to visit all things wireless. In this chapter, we'll examine how Enhydra XMLC
supports this extremely diverse new wireless world and its rapid evolution.

There is a single major reason that XMLC is able to support the major devices of the world: XML.
The world seems to have gotten it right this time. Starting with Phone.com's move to make HDML
XML-compliant—and re-dub it Wireless Markup Language (WML)—the wireless industry,
including the voice recognition folks, did us all a favor by using XML constructs to define their
take on presentation markup.

The XML fervor has marched into the voice market as well. This market addresses the reticent
few who have yet to go wireless. A whole new industry, led by TellMe, Nuance, and Voxeo, are
making it simple for any business that has existing Web technology to reach the audience that is
neither mobile phone- nor browser-connected. As we'll see, it takes only a few moments to use
Enhydra to access completely free voice activation and voice generation technology, presenting
verbal forms over phones both rotary and wireless.

Although Enhydra XMLC is quite capable of supporting XHTML and NTT DoCoMo's i-
mode/cHTML, this chapter will focus on development with the Enhydra XMLC wireless and
voice representative technologies WAP and VoiceXML. Many, many books are available on the
generic nature of wireless and voice development, so we'll introduce just enough of each language
to set the stage for explaining and demonstrating what it means to generate presentations with
Enhydra XMLC.

Wireless Domains

Reflecting a relatively new market, wireless development must take into account the mish mash of
standards and proprietary extensions, both in software and hardware. If you're developing wireless
applications for the consumer market, there's a lot of per-vendor idiosyncrasies to consider. If
you're an IT developer for a company that has selected devices from one or two vendors, your job
is going to be much easier.

The good news is that there are only two major wireless technologies in the entire world: WAP
and i-mode. Each of these phone standards supports a markup language and, in yet more good
news, both standards are headed toward supporting XHTML Basic as a presentation language.

WAP Phones, WAP Gateways

http://phone.com/

 259

Most of us have now heard of the Wireless Application Protocol (WAP) and the WAP Forum, a
consortium of carriers and handset manufacturers. The WAP Forum set out to deliver a mobile
device- and carrier-independent standard that could support mobile phones of all types, as well as
all varieties of private networks. A protocol had to be defined that could work effectively over old
style circuit networks as well as modern TCP/IP-capable, packet-switched networks.

The key to carrier network and handset independence is the required presence of a WAP gateway.
The WAP gateway is not an application server, nor is it a Web server. Instead, it is a specialized
device that supports both a private and public interface. This interface represents the "gated
garden" of each proprietary, private carrier network of mobile devices.

Illustrated in Figure 11.1, the WAP gateway receives and transmits HTTP request/responses from
and to the Internet, performing various tasks such as transcoding. At this point the gateway will
rework HTML, and sometimes munge WML, into what it believes will be meaningful to, for
example, a Nokia or Ericsson phone.

Figure 11.1. WAP servers as gateways between the Internet and carrier networks.

WML is the markup language promoted by the WAP Forum. Nokia, Motorola, Ericsson, and
many other handset makers support WAP-enabled phones capable of rendering WML
presentations.

Note

If ever there was a reason for supporting the coming of IPv6, the proliferation of mobile
devices is a big one. Imagine if the millions of phones that have already been deployed had
their own IP addresses. WAP phones luckily share one IP, that of their carrier. The carrier's
private network has its own proprietary address mechanism for finding the right phone. As
clumsy as this IP-to-private address mapping might seem, it's a blessing for now until IPv6
becomes widespread.

WAP servers can be problematic. They don't all behave consistently, requiring the knowledge of
coding and configuration tricks on the part of the application developer. For instance, one well
known WAP server strips the user agent information from the heading, requiring some algorithmic
sleight-of-hand by the application to determine the client type (that is, the phone type). Turning
off handset caching is another.

The Wireless Markup Language

WML was not always an XML language. WML is derived from Openwave's (formerly Phone.com)
HDML language. In its wisdom, the WAP Forum decided to move HDML to a real XML
language, namely WML. It is well-formed XML and is formalized by its DTD.

http://phone.com/

 260

Once again, XML is the underlying theme. In Chapter 1, "Enhydra and XMLC," we told the story
of how long before WAP publicly entered the U.S., developers of WAP applications from Taiwan
and Sweden turned Enhydra and Enhydra XMLC into a wireless, WML application-serving
technology in mid-1999. Their contributions took the form of the WML-specific extensions of the
DOM API, making it possible to perform "type-safe" DOM template programming in the XMLC
environment.

WML adopts a subset of HTML elements as well as some specialized markup designed to provide
meaningful functions when hosted by a small phone that can be off-line or out-of-range of a server
at any time. In order to give a WML document a fighting chance of giving a user a pleasing,
useful experience, a single document, referred to as a deck, might contain multiple cards. Each
card is a possible display interaction, chosen based on user interactions in previous cards. This
paradigm allows for a meaningful amount of user interaction before another deck is required.

cHTML and i-mode

The largest rival to WAP is the i-mode protocol for mobile devices. i-mode and its "compact
HTML" language, cHTML, take advantage of the packet-based i-mode network and an "always
on" environment to better mimic browser-like behavior. Another major advantage of i-mode
development reflects the standard construction of i-mode handsets. Every i-mode device is assured
of the same amount of presentation space: 16 characters-by-6 lines. WAP has almost no
standardization in this respect. And every i-mode phone has an IP stack that supports SSL for
secure connections.

If you're wondering why WAP hasn't required the same of its handset makers, there's one answer:
The i-mode environment is dominated by one large carrier and device vendor rolled into one—
NTT DoCoMo.

The final thing to consider about cHTML/i-mode development is that it dominates the wireless
world, representing more than half of the world's wireless market. The flip side to this statistic is
that the vast majority of i-mode clients are in the Japanese market, whereas wireless is more
pervasive in the rest of the world. Although this might be sufficient reason to stick to WAP
programming, be sure to keep an eye on the eventual proliferation of i-mode to other areas of the
world.

i-mode isn't perfect. There's no client scripting language, like WML's WMLscript. But there are
still very clear advantages:

• No requirement exists for a gateway device, such as a WAP server.
• Applications can be written to assume an "always on" environment.
• Far fewer per-device tricks are required for supporting i-mode phones.

We will not be addressing cHTML development in this book, but Enhydra XMLC is quite capable
of supporting i-mode development.

Perusing the WML Language

On the surface, the WML language will look familiar to an HTML developer. To accommodate
the constrained memory and uncertain connection characteristics of WAP phones, WML reflects a
"deck of cards" metaphor. The deck is the entire markup page, containing a collection of cards.
Individual <card> elements represent the portion of the larger deck that is currently displayed. A
card is rendered when it is called upon by an internal event, an anchor using href attributes, a
"relative" movement directive that moves through a page history stack, or a WMLscript command.

 261

This strategy saves on the use of an already constrained bandwidth by pre-loading many of the
pages (or cards) that will be displayed in a multi-card navigation. It also means that the user can
continue performing a useful task, even though the connection has been lost.

Cards are referenced by a URL, much like the use of ids and anchors in HTML. For example,

<card id="vendors>

might be referenced by

http://www.otterpod.com/mysfa.wml#vendors

where mySFA.wml is the name of the application. A typical "hello world" WML page might look
like the following:

<?wml version="1.0">
<DOCTYPE wml PUBLIC "-//WAPFORM//DTD WML 1.1//EN"
 "http://www.wapformum.org/DTD/wml_1.1.xml">
<wml>
 <card id="Hello" title="Hello World">
 <p>
 <small id="Greeting">Hello There</small>
 </p>
 </card>
</wml>

The id attribute uniquely identifies each card element. The title attribute value represents the
card's title, and is automatically displayed by (most) handsets at the top of the display. The title is
also used for the handset's bookmarks.

Event Bindings

WML supports the notion of events. Events are registered with the <onevent> or <do> elements.
The <do> element associates the actions of the handset's menu systems and keys with browser
functions. The following fragment instructs the browser to display the next card, friends, when
the Accept button has been clicked by the user:

<do type="accept">
 <go href="#friends" />
</do>

The <onevent> element deals with the effect of, for instance, advancing to the next card.
Another way of putting it is that <onevent> registers actions (quasi-"listeners") that are set in
motion when one of a number of standard events occurs. The following

<onevent type="onenterbackward">
 <go href="#otherfriends" />
</onevent>

will cause the loading of the card otherfriends if the user should scroll backwards. Table 11.1
lists the <onevent> event types.

Table 11.1. WML Event Types
Event Description

http://www.otterpod.com/mysfa.wml#vendors

 262

onenterbackward Specifies a URL to access when the card is entered from a <prev>
task

onenterforward Specifies a URL to access when the card is entered from a <go> task
ontimer Specifies a URL to access when a timer, set by <timer>, expires
onpick Specifies a URL to access when you select or deselect an item

defined by an <option> element

Events are bound to tasks, described in the following code fragment. For instance, you can use
<onevent> to bind an <ontimer> event to a <refresh> task, which resets a WML card and
resets any values:

<card>
 <onevent type="ontimer">
 <refresh/>
 </onevent>
</card>

User Tasks

Tasks are actions taken by the microbrowser based on some user action. In Table 11.2, we've
already used the <go> element task with our event examples.

Table 11.2. WML Tasks
Task Description
<go> Loads a specified URL
<prev> Loads the previous card
<noop> Behaves like it sounds
<refresh> Redisplays cards; resets variables

Using the <onevent> element, you can assign a task to an event. You can also assign a task to a
user interface element. To do this, you use the <do> element, as in

<do type="prev">
 <accept/>
</do>

which, in this case, maps the accept soft key to the <prev> event. The supported user interface
elements for mobile devices are the following: accept, delete, help, options, prev, and
reset.

Variables

WML supports the concepts of variables:

<setvar name="vendor" value="HP">
<p>Vendor is $(vendor)

These two lines demonstrate how to set the variable vendor, then access the variable's contents.

Formatting Elements

 263

Given the focus on supporting very simple mobile devices, WML provides a small but flexible
group of formatting elements. Attributes of each element are listed in parentheses in Table 11.3.

Table 11.3. WML Formatting Elements
Element Description
 Boldface text
<big> Large font

 Line break
 Emphasis
<i> Italicized text
 An image (alt, src, localsrc, height, width, align)
<p> A paragraph (align, wrap)
<small> Small font
 Same as emphasis
<table> A table (columns, align, title)
<td> A table cell
<tr> A table row
<u> Underlined text

In general, you'll make heavy use of these elements to coerce the most consistent behavior
possible in a world of handset devices supporting four to eight lines of display, and characterized
by inconsistent implementations of button and choice selections.

For example, it's probably no surprise that the font-reducing behavior of the element <small> is
used often to offset the size of the display as much as possible. <anchor> and
 elements
are often your best choice for building a menu of selections that will appear consistently across
devices.

The WML Development Environment, Kinks and All

Not too many of us can afford to have a lab of every handset configuration on the market. Luckily,
it's easy to find handset device emulators, each capable of emulating multiple devices. To simplify
the issues of establishing a wireless development environment, the phone vendors have been wise
enough to provide free phone emulation tools, some written in Java, that are often capable of
assuming multiple device personalities.

Figure 11.2 demonstrates the Openwave emulator and development environment. With its URL
set to localhost:9000, you can see that it's displaying the Enhydra stub application as adapted
to WML. This application was created by the Enhydra AppWizard, selecting WML in the Client
Type pop-up menu. This phone emulator, as well other emulators and development environments
from Nokia, Pixo, and other handset makers, can be downloaded (usually at no cost) from the
companies' respective Web sites.

Figure 11.2. Openwave SDK and microbrowser emulator, displaying the Enhydra
stub application.

 264

Forget Cookies

Most microbrowsers do not support cookies, so we'll want to rely on URL encoding to give
Enhydra the capability to maintain session for the wireless application. To override Enhydra's
default behavior of using cookies for storing session keys, we'll want to update the application's
configuration file to read the following:

SessionManager.SessionEncodeUrlState = auto

Using writeDOM() is also key to URL encoding, so be sure to use it when you're ready to write
out the DOM.

Disable Document Caching

Document caching is something that microbrowsers take advantage of to conserve on bandwidth.
For a dynamic application, this is an undesirable feature, so we'll want to find a way to turn off
this behavior. One way is to use the META element in the document's HEAD element, using the
WML-specific forua ("for user agent") attribute:

<meta forua="true" http equiv="Cache Control" content="max age=0"/>

And There's More…

Keep your eyes and ears peeled for the idiosyncrasies that characterize a lot of phones out there.
We've listed a few things to watch for, but as you can imagine, implementers of microbrowsers
have had to integrate support for the small environment of mobile devices with desktop
technologies that assume there's a lot of memory space. And even if you can squeeze all the well-
known functionality into a small device, that technology must be adapted to address the fact that
mobile devices are on, then off, in and out of contact with the back office server and the rest of the
network.

Watch out for strange caching and other unexpected behaviors. For example, some developers
have standardized the insertion of a timestamp in phone URLs to account for buggy caching.
Other tricks abound to account for the fact that there are WAP servers that strip the header
information before passing on the client request in an HTTP request header.

 265

Luckily, there's a lot of information out there. Get on a Nokia or open source mailing list and take
notes.

WML Template Generation with xmlc

Mentioned earlier, Enhydra XMLC gets its WAP awareness from the inclusion of a DOM
extension that is specific to the WML DTD. Everything WML in Enhydra can be found in the
following packages:

org.enhydra.wireless.wml
org.enhydra.wireless.wml.dom

The first package addresses the WML DOM factory that is specific to generating WML DOM
templates. The class WMLDomFactory is defined as an extension of the standard
XercesDomFactory and performs WML-specific housekeeping chores, such as setting the correct
MIME type:

setDocument(document,"text/vnd.wap.wml", "UTF-8");

XMLC must be told to use the WMLDomFactory, which can be done at the command line:

xmlc -dom-factory org.enhydra.wireless.wml.WMLDomFactory

When you use Enhydra AppWizard to build your WML client type, it automatically adds this -
dom-factory option and value to the generated options.xmlc file. For standard servlets,
you'll want to set the MIME type with the following:

response.setContentType("text/vnd.wap.wml");

Again, if you use AppWizard to build a standard servlet, this will be taken care of for you.

DOM API Extensions for WML Programming

Enhydra XMLC incorporates a WML-specific extension of the DOM API. Each element is
represented by its own DOM interface, as listed in Table 11.4.

Table 11.4. WML DOM Element Interfaces
MLAccessElement WMLAElement WMLAnchorElement
WMLBElement WMLBigElement WMLBrElement
WMLCardElement WMLDocument WMLDoElement
WMLDOMImplementation WMLElement WMLEmElement
WMLFieldsetElement WMLGoElement WMLHeadElement
WMLIElement WMLImgElement WMLInputElement
WMLMetaElement WMLNoopElement WMLOneventElement
WMLOptgroupElement WMLOptionElement WMLPElement
WMLPostfieldElement WMLPrevElement WMLRefreshElement
WMLSelectElement WMLSetvarElement WMLSmallElement
WMLStrongElement WMLTableElement WMLTdElement
WMLTemplateElement WMLTimerElement WMLTrElement
WMLUElement WMLWmlElement

 266

WMLCardElement supports 15 methods, some of which set up event behavior:

• setOnEnterBackward()— Specifies the event to occur when a user enters a card
using a go task.

• setOnEnterForward()— Specifies the event to occur when the user enters a card
using a prev task.

• setOnTime()— Specifies the event to occur when a timer expires.

Device Detection

As you might expect, information about what type of device is accessing your application can be
deciphered by inspecting the HTTP request header. Note that there are still WAP servers out there
that strip this information, so you'll need to perform some validation with the client if there's an
uncertainty.

The ShowFloor application is designed to support multiple devices where it makes sense, again
taking advantage of the fact that HTML, WML, and other wireless markup languages can all be
served by XMLC-generated DOM templates. The getPageName() method takes advantage of
the DOM template class-naming convention enforced by the Enhydra make file system, where the
name of the markup page is appended with the language it represents. For example,

• mysfa.html becomes mysfaHTML.class
• mysfa.xml becomes mySFAXML.class
• mysfa.wml becomes mysfaWML.class

As we'll see in Chapter 12, "Client-Server Development with J2ME and Flash," the XML file will
become important for delivering a custom XML dialect to a J2ME phone.

getPageName() reads the Accept string in the HTTP request header to determine the type of
content required by the wireless client. After it has been determined, it takes the presentation
object name, stored in poName (for example, mysfa), and appends the preferred language name
(for example, XHTML) to the string that is returned (for example, mysfaXHTML). The string is then
used to load the DOM template reflecting, by naming convention, the expected markup language.
getPageName() is implemented as follows:

public static String getPageName(HttpPresentationComms comms, String
poName)
 throws ShowFloorPresentationException {

 String header = null;
 String userAgent = null;
 String flashClient = null;

 try {
 flashClient = comms.request.getParameter("flash");
 userAgent = comms.request.getHeader("User-Agent");

 if (flashClient != null) {
 comms.response.setEncoding("ISO-8859-1");
 return poName + "XML";
 } else if(userAgent != null && userAgent.indexOf("RIM") != -1) {
 return poName + "HTML";
 } else if(userAgent != null && userAgent.indexOf("UP.") != -1) {
 return poName + "WML";

 267

 } else if ((header = comms.request.getHeader("Accept")) == null)
{
 return null;
 } else if (header.indexOf("text/xml") != -1) {
 return poName + "XML";
 } else if (header.indexOf("wap") != -1) {
 return poName + "WML";
 } else if (header.indexOf("text/xhtml") != -1) {
 return poName + "XHTML";
 }
 else {
 //Defaulting to html.
 return poName + "HTML";
 }
 } catch (Exception e) {
 throw new ShowFloorPresentationException("Trouble rerouting
header:" + header, e);
 }
}

As you'll discover, a good number of WAP and i-mode phones are quite good at handling HTML,
so it makes a good default language type in the event that no match is made.

The mySFA Vendor Notes Application

It's time to apply this brief introduction to WAP and WML to the implementation of a ShowFloor
service. What we will do is give the mySFA subscribers, having logged into their account, the
capability to browse the list of notes they made earlier, associating each one with a "must see"
vendor. They will use these notes to make sure they don't forget to see vendors they had a specific
interest in.

Using their mobile phone, they can

• Select from a list of mySFA applications.
• Having selected Vendor Notes, they can then scroll vendor-by-vendor through a list of

notes associated with the current vendor.

Listing 11.1 is the WML markup that will display the list of mySFA applications from which to
select. Our application is Vendor Notes.

Listing 11.1 mysfa.wml

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/ DTD/
wml_1.1.xml">
<wml>
<head>
<meta forua="true" http-equiv="Cache-Control" content="max-age=0"/>
</head>
 <card id="mySFAmenu" title="mySFA Apps">
 <p>Your apps:

 <anchor>Schedule
 <go
href="http://localhost:9000/mySFAPresentation.po?event=sched"/>

 268

 </anchor>

 <anchor>Vendor Notes
 <go
href="http://localhost:9000/mySFAPresentation.po?event=notes" />
 </anchor>

 <anchor>Booth Lookup
 <go
href="http://localhost:9000/mySFAPresentation.po?event=lookup" />
 </anchor>

 </p>
 </card>
</wml>

Each application selection is made active by its inclusion in <anchor> elements, and is
associated with specific href attributes pointing to the mySFAPresentation presentation
object (servlet) using the <go> element.

We're now faced with a design issue. We could list the first vendor and associated notes, then use
<do href=<anchor reference>> to fetch the next vendor. Or, we could just send the whole
set of vendor notes over as a set of cards, one card per vendor. We've chosen the latter for purpose
of this demo; although careful thought should be given to just how much space the targeted phone
is capable of handling.

The mySFA.wml DOM Template

Fundamentally, there is little difference between WML and HTML development with XMLC.
Other than the strangeness of some of the newly introduced WML elements, the mySFA.wml
markup in Listing 11.2 probably looks somewhat like a typical XMLC template.

One thing to note is that we're going to cast an overloaded light on the significance of the use of
the id attribute to identify card1. In this example, card1 will result in the creation of an xmlc-
generated accessor method, getElementCard1(). It will also serve within the WML
microbrowser environment as an attribute that uniquely identifies the first card in the deck.

Listing 11.2 mysfa.wml

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/
wml_1.1.xml">
<wml>
<head>
<meta forua="true" http-equiv="Cache-Control" content="max-age=0"/>
</head>

 <card id="card1" title="IBM" >
 <p id="PrevAndContent"><small>See if Joe Smith, the VP is there.
 <anchor>
[Next]<go id="NextGo" href="#card2"/></anchor>
 <anchor> [Previous]<prev/> </anchor>
 </small>
 </p>
 </card>

 <card id="card2" title="ACME" class="mockup">
 <p><small>Check out the new server.
 <anchor>
[Next]<go href="#card3"/></anchor>
 <anchor> [Previous]<prev/> </anchor>

 269

 </small>
 </p>
 </card>

 <card id="card3" title="Peabody" class="mockup">
 <p><small>Here's everything I know about Peabody.
 <anchor>
[Next]<go href="#card1"/></anchor>
 <anchor> [Previous]<prev/> </anchor>
 </small>
 </p>
 </card>
</wml>

As you can see, we're going to discard the second and third cards in our stack because they bring
nothing new to the template, other than serving as good content and navigation targets for a proof-
of-concept or design review. The following will remove the mockup as identified by the class
attributes:

xmlc -dump -delete-class mockup mySFA.wml

The mySFA Application

mySFAPresentation.java in Listing 11.3 is responsible for the generation of live content,
using the DOM template generated by xmlc from mySFA.wml. We've chosen to forgo the use of
the BasePO approach to show this demonstration application as fully functioning with a minimal
amount of code (and hard coding of vendor and vendor notes data).

Listing 11.3 mySFAPresentation.java

package x.presentation;

import org.w3c.dom.*;
import org.enhydra.wireless.wml.dom.*;
// Enhydra SuperServlet imports
import com.lutris.xml.xmlc.*;
import com.lutris.appserver.server.httpPresentation.*;
import com.lutris.appserver.server.httpPresentation.HttpPresentation;
import
com.lutris.appserver.server.httpPresentation.HttpPresentationComms;
import
com.lutris.appserver.server.httpPresentation.HttpPresentationExceptio
n;

// Standard imports
import java.io.*;
import java.util.*;
import java.io.IOException;

public class mySFAPresentation implements HttpPresentation {

 public void run(HttpPresentationComms comms)
 throws HttpPresentationException, IOException {

 HttpPresentationRequest req = comms.request;
 String menuItem = req.getParameter("event");
 if (menuItem.equals("notes")) {
 DisplayNotes(comms);
 } else if (menuItem.equals("schedule")) {

 270

 // Display the mySFA user's schedule
 } else if (menuItem.equals("lookup")) {
 // Display the mySFA user's booth lookup page
 }
 }

 public void DisplayNotes(HttpPresentationComms comms)
 throws HttpPresentationException, IOException {

 HttpPresentationRequest req = comms.request;
 String vendors [] = { "Nokia", "Ericcson", "Motorola", "Pixo"};

 String vendorNotes [] = { "See if Charlie still works there.",
"See if they have a
J2ME phone.", "Ask about their developer program", "Ramp up on i-
mode."};

 mySFAWML mySFAdeck;
 mySFAdeck = (mySFAWML)comms.xmlcFactory.create(mySFAWML.class);

 // Grab all of the id references we need; not forgetting
 // to remove the id attributes, with the exception of
 // the card ID!
 WMLCardElement card = mySFAdeck.getElementCard1();

 // Grab the parent. We'll need it for removing the template
 // later on.
 Node parent = card.getParentNode();
 WMLPElement note = mySFAdeck.getElementPrevAndContent();
 note.removeAttribute("id");

 WMLGoElement go = mySFAdeck.getElementNextGo();
 go.removeAttribute("id");

 String vTitle = "";
 for (int i = 0; i < vendors.length; i++) {
 vTitle = vendors[i] + " (" + (i + 1) + " of " + vendors.length
+ ")";
 card.getAttributeNode("title").setValue(vTitle);
 card.setTitle(vTitle);

 // Set the card's ID, incrementing it by one.
 card.getAttributeNode("id").setValue("card" + (i + 1));

 mySFAdeck.setTextPrevAndContent(vendorNotes[i]);

 // Update the go element's href value to point to the next card.
 //
 if ((i + 1) == vendors.length) {
 // reset the deck to point to the top card.
 go.setHref("#card1");
 } else {
 // set the current card to point to the next one.
 go.setHref("#card" + (i+2));
 }
 Node clone = card.cloneNode(true);
 parent.appendChild(clone);
 }
 //Remove the card template.
 parent.removeChild(card);

 271

 comms.response.writeDOM(mySFAdeck);
 }
}

If you've read Chapter 8, "HTML Presentations," the algorithm applied by this example is
straightforward. After loading the DOM template, we immediately use the xmlc-generated
accessor methods getElementCard1(), getElementPrevAndContent(), and
getElementNextGo() to access the portions of the DOM template that are to be dynamically
updated, then cloned. We also want to, with the exception of the card id attribute, remove id
attributes where they're no longer needed. Redundant ids by definition might cause the device's
microbrowser to fall over.

We then enter a loop, updating the template with fresh content for every vendor that has been
noted. The ids for each card are guaranteed to be unique for our use of incrementing the number
appendix to the "card" name, for example, card2, card3, and so on.

After removing the original template, the only task left is to invoke writeDOM() to return the
updated WML markup to the client device. Again, because we used the WML DOM factory,
there's no need to worry about updating the MIME type.

Enhydra AirSent Demo

If you or the folks you work with are still trying to figure out the possible impact of
supporting wireless, mobile, and small footprint devices in your Web application design,
the publicly available demonstration site http://www.airsent.com is implemented with
Enhydra and Enhydra XMLC to suggest some possible scenarios for bringing HTML,
WML, CHTML, J2ME, and Flash together within a single business application.

AirSent is a speculative implementation of a fictional Fed-Ex-like delivery business that
picks up and delivers small packages and letters using bicycle messengers, presumably
operating in the financial district of San Francisco. Be sure to note where the roles of
browsers and phones make sense. Afterwards, see whether you can then walk through
your existing Web application and determine if and where wireless, Flash, or even voice
presentations make sense.

VoiceXML

The promise of voice recognition technology has been around for quite a while. It now appears to
be ready to plug into the Internet backbone of application servers and Enhydra XMLC is up to the
task. The XML language of voice, according to the W3C specification, is VoiceXML. The rest of
this chapter will be spent on explaining VoiceXML and how you might incorporate it into a Web
application—where it makes sense!

On March 7, 2000, the VoiceXML Forum released the VoiceXML 1.0 specification as a
standardized programming interface for speech and telephony applications. During its May 10-12,
2000 meetings, the Voice Browser Working Group of the W3C agreed to adopt VoiceXML 1.0 as
the basis for the development of a W3C dialog markup language.

Voice Portals

There's a new concept called the voice portal, providing development and voice technology
services that make it easy for anyone with a browser and a VoiceXML book to process voice

http://www.airsent.com/

 272

presentations at little or no cost. Throw in an open source application server like Enhydra, and
you're on your way to building highly dynamic voice-driven applications.

Let's consider the role of a voice portal, illustrated in Figure 11.3, and how it plays into the Web
picture.

Figure 11.3. The role and functionality of voice portals.

A person dials a special telephone number that connects through a telephone switch into a voice
portal. A voice portal is a hardware device that connects a telephone line to the Internet, and
provides speech recognition, text-to-speech, speech recording, and digital sound playback
functionality. The voice portal interfaces over the Internet to a VoiceXML server, which provides
the actual application that the user is accessing through the other interfaces. The VoiceXML
server provides VoiceXML to the voice portal and the business logic and database access.
Multiple machines can replace the single VoiceXML server to distribute the layers, the load, and
the functionality.

IBM, Nuance, L&H, and SpeechWorks are some of the voice portal software providers. Voice
portals are expensive to set up and maintain, so many third party companies provide voice portal
services, most of which are free of cost when used for development purposes. Examples include
TellMe, BeVocal, and Voxeo. These sites provide impressive online development environments
that provide the following services:

• The opportunity to specify a URL, representing the location of your Enhydra XMLC
application, which the voice portal site will link to a specific phone number. When
somebody dials the number, your application is activated.

• An HTML text area control for entering "quick check" VoiceXML. This is fun and useful
for getting your feet wet with static VoiceXML, until you're ready to program.

• A debug window to monitor, step by step, how the site's VoiceXML processor is handling
your markup.

• Extensive online documentation, including sample code, tutorials, discussion groups, and
in some cases, hyperlinks.

• Best of all, a phone number with ID code is provided to you with which to test your
VoiceXML application.

Using the Voxeo system at http://community.voxeo.com, it took me fewer than 20 minutes from
the point I started registering as a developer to receive my login ID and password, at no cost.
Other systems provide similar services with a quick turnaround in setting up your account.

The VoiceXML Language

Your first question of VoiceXML might be, "What can I actually do, other than speak some words
electronically, or interpret some words the caller might utter?" The answer is, "A lot!" I felt a bit

http://community.voxeo.com/

 273

like Rip Van Winkle as I learned just how much can be done today with voice technology. My
first clue was seeing that VoiceXML is a W3C specification.

A quick glance at VoiceXML reflects many capabilities that are similar to HTML development,
including the use of forms and menus.

The flavor of the VoiceXML programming model is similar to HTML development, making it
clear that mapping the parts that can take advantage of voice technology is relatively
straightforward, where it makes sense. It is also similar to WML development in its reliance on
registering events that are associated with tasks.

The following example is the familiar Enhydra stub application, as expressed in the VoiceXML
dialect:

<?xml version="1.0"?>
<!DOCTYPE vxml
 PUBLIC "-//Lutris Technologies//DTD VXML 1.0 + Lutris Ids//EN"
 "c:/ lutrisvoicexml1-0.dtd">
<vxml version="1.0">
 <form>
 <block>Welcome to voice XML from Lutris Technologies</block>
 <block>The time is now </block>
 <block id="time">00:00:00</block>
 </form>
</vxml>

In this case however, you "view" this presentation by dialing a phone number and listening to the
phrase, "Welcome to VoiceXML from Lutris Technologies. The time is now (current time)." Of
course, the current time is inserted by the manipulation of the VoiceXML DOM template using
XMLC development.

Grammar

Most speech recognizers work by matching up a recorded speech utterance with a list of words.
The way of expressing the words to match with rules for the match is defined by a grammar.
Because speech recognizers and their grammars existed prior to the VoiceXML specification, how
the grammar maps into the specification varies from vendor to vendor, and from the various voice
portal services and VoiceXML emulators. Additional features such as menu operations are
dependent on and tied to the grammar. For this reason, writing VoiceXML for Voxeo differs from
writing VoiceXML for IBM or TellMe.

XMLC Accessor Methods and VoiceXML

Because id attributes are necessary in the creation of the accessor methods, you must check for
the definition of id attributes as defined by the DTD. Each voice portal, depending on their own
preferences and the telephony equipment they use, has a uniquely defined VoiceXML. (Okay, so
it takes awhile for a standard to become comprehensively implemented in a standard way.)

Without the accessor methods, the items can still be modified using a more complex, DOM tree-
walking methodology. But you probably want to go beyond tree walking to take advantage of
XMLC's features. Make a copy of your publicly available voice portal's preferred VoiceXML
DTD to your server environment. Making the following addition of the following modification
will do the trick:

<!ENTITY % enhydraid "id ID #IMPLIED">

 274

Then, elsewhere in the DTD, incorporate references to enhydraid for any elements that you will
be identifying with id attributes for the xmlc command to find during compilation:

<!ATTLIST prompt
 bargein %boolean; #IMPLIED
 cond %expression; #IMPLIED
 count %integer; #IMPLIED
 timeout %duration; #IMPLIED
 %enhydraid; >

Then be sure to update your VoiceXML file to point to your custom DTD:

PUBLIC "-//My Company//DTD VXML 1.0 + Enhydra Ids//EN" "c:/
enhydravoicexml1-0.dtd">

This same philosophy of enhancing a DTD with an id declaration applies to any XML language,
including the new SVG specification from W3C, discussed in Chapter 12.

mySFA as a VoiceXML Application

We're going to take advantage of VoiceXML's support for Dual Tone Multi Frequency (DTMF) to
take the mySFA Vendor Notes application discussed earlier and turn it into a more convenient
application. Small presentation screens aren't a concern when you can rely on voice technology.

DTMF is the standard behind the tones produced by the keys in a telephone handset. DTMF
grammars using the element <dtmf> or the dtmf attribute can be associated with voice prompts
and choices to rely less on the spoken word and more on simple touches of the keypad. Sorry, for
those of you hanging onto the 60s, there's no princess phone support at this time.

Listing 11.4 generates a voice prompt that describes the three keypad buttons that can be pressed
to launch our three mySFA applications. The number 2 key will launch Vendor Notes. As you can
see, this VoiceXML file employs the familiar form, then stores the user's response in a value
variable. The filled element is an aspect of VoiceXML's Form Interpretation Algorithm (FIA).
<filled> is an implicit navigational element that takes over the form when a value has been
chosen. In our case, it's the push of the 2 button on the user's key pad.

Listing 11.4 mySFAwelcome.xml

<?xml version="1.0"?>
<!DOCTYPE vxml PUBLIC '-//Nuance/DTD VoiceXML 1.0b//EN'
 'http://community.voxeo.com/vxml/nuancevoicexml.dtd'>
<vxml version="1.0">
<form id="mysfaapps">
 <prompt>
 Welcome to my S F A. Please select one of the three applications
using 1 for Schedule, 2
for Vendor Notes and 3 for booth look up.
 </prompt>

 <option dtmf="1" value="sched">
 Schedule
 <option>
 <option dtmf="2" value="notes">
 Vendor Notes
 <option>
 <option dtmf="3" value="booth">
 Booth Location

 275

 <option>

 <filled>
 <submit next="http://www.otterpod.com/mySFAPresentation.po"
 method="post"
 namelist="mysfaapps" />
 </filled>
</form>
</vxml>

What happens at this point is the activation of the <submit> element to pass execution control
back to the Enhydra application server and the mySFAPresentation presentation object. The
namelist variable contains the VoiceXML variable value, which will be sent with the HTTP
request along with its value, notes.

Listing 11.5 is the template we'll generate with xmlc and modify with
mySFAPresentation.java. Because it is so similar to Listing 11.3, let's review the unique
portions of the code.

Listing 11.5 mySFAVendorNotes.xml

<?xml version="1.0"?>

<!DOCTYPE vxml
 PUBLIC "-//Enhydra//DTD VXML 1.0 + Enhydra Ids//EN"
 "c:/enhydra/x/src/x/presentation/enhydra.dtd">

<vxml version="1.0">
 <form>
 <block>
 <prompt id="Greeting">
 Here are your Vendor Notes
 <prompt>
 <goto nextitem="vendor1">
 </block>

 <block id="vendor1">
 <prompt id="vendorNotes">
 For IBM, see the man about a blue suit.
 <prompt>
 <goto id="nextItem" nextitem="vendor2">
 </block>

 <block id="vendor2" class="mockup">
 <prompt id="vendorNotes">
 For Apple, check out those cool development boxes.
 <prompt>
 <goto nextitem="vendor1">
 </block>

 </form>
</vxml>

First of all, we'll leave the first block element intact. All it does is introduce the caller to the page.
We can, however, update the greeting to indicate how many vendor notes are about to come:

page.setTextGreeting("Here are your " + vendors.length + vendor
notes.");

 276

Note

Your first instinct might have been to rely on the introduction of a element midway
through the string in order to signify where the number of vendors should be placed. However,
neither VoiceXML nor WML support the span element.

Later on, we enter a loop, making use of the generated setTextVendorNotes() method to
update each prompt with the current vendor's vendor note. To generate <goto> elements pointing
to additional, dynamically-added vendor blocks such as this

<goto id="nextItem" nextitem="vendor2">

we use the following operations:

element nextItem = page.getElementNextItem();
nextItem.setAttribute("nextitem", "vendor" + (i + 2));

Having completed and deployed the presentation object, the mySFA subscriber can now simply
listen to the application describe each vendor's note as a stream of spoken information, with no
further voice or keypad actions required.

Developing Without a VoiceXML DOM Extension

The open source version of Enhydra XMLC has no VoiceXML-specific DOM at the time of this
writing. We therefore must rely on standard DOM programming and general DOM Element
classes. But, as we've seen, because we still have access to xmlc-generated accessor methods,
there's very little need to expose our code to heavy DOM API methods or DOM traversal
algorithms. The only real price we pay in the absence of a VoiceXML DOM is the lack of
VoiceXML-specific-type checking during runtime.

This has been a rapid introduction to the VoiceXML language, providing a very narrow view of its
overall capability. Our goal has been to demonstrate how easy it is to manipulate VoiceXML
content with Enhydra XMLC. Having a common basis in XML makes it almost trivial to design
and drive a VoiceXML application with XMLC. Be sure to check out Voice Application
Development with VoiceXML from Sams Publishing for a complete review and appreciation of the
capabilities and potential of VoiceXML.

Summary

In this chapter, we've introduced both the good and bad news about wireless presentation
development. The good news is that mobile computing has embraced XML as a means of tapping
into and extending Internet applications. The bad news is that it's an early adopter industry,
characterized by a lot of diverse devices implemented in non-standard ways, in order to address
their unique, small footprint environments.

Enhydra XMLC makes it very easy to adapt new and existing Web applications to the mobile
client. This is due in large part to the common language of XML and the emulation of browser
displays by the mobile industry.

We've also touched on VoiceXML, which impressively adapts old technology to the new ways of
Web development. Again, thanks to the common underpinning of XML, Enhydra XMLC is an

 277

excellent technology for building and driving dynamic VoiceXML presentations, taking advantage
of the wide variety of highly accessible voice-enabling technologies.

This chapter was in no way intended to be a comprehensive discussion of these technologies, or
the design implications of their integration into Web applications. Hopefully, we've provided
sufficient flavor to using wireless and voice markup technology for you to judge their applicability
for using Enhydra XMLC with your Web applications.

 278

Chapter 12. Client-Server Development with J2ME
and Flash
IN THIS CHAPTER

• Java 2 Micro Edition
• XML for J2ME Client/Server Communication
• Enhydra kXML
• The ShowFloor Admin Application
• Building a J2ME Application
• Flash
• Dynamic Graphics with SVG and XMLC
• Summary

Browsers, as PC or mobile clients, are really operating system-independent "desktops" with a
modest amount of built-in intelligence. The addition of JavaScript, combined with browser
manufacturer-specific features, gives them the capability to do some pretty clever things. But they
lack the capability to save information between sessions and operate meaningfully when there's no
Internet connection. There are inconsistent versions and implementations across operating systems,
and their manufacturers continue to compete with different markup extensions (and behaviors).

After introducing the topic of wireless and voice presentations in Chapter 11, we're now going to
look at client technology that casts XMLC in a different role. In this chapter, we'll spend most of
our time focusing on smart clients represented by Java 2 Micro Edition (J2ME) and Macromedia's
wildly popular Flash, both capable of manipulating and structuring their own presentations.

J2ME and Flash are similar in their capability to take care of the visual business on the client side,
leaving little reason for server-side preparation of a structured display. J2ME and (surprisingly)
Flash 5 offer new capabilities in the tradition of the "heavy client" client/server development of
the late 1980s.

There are a great deal of articles and books that go into great detail to explain J2ME, such as Yu
Feng and Jun Zhu's Wireless Java Programming with J2ME (Sams Publishing). With that in mind,
we will focus on the J2ME components, as well as an open source contribution from
kxml.enhydra.org, that are relevant to turning Enhydra XMLC into a core communications tool for
integrating J2ME-enabled smart phones and PDAs into enterprise clients for modern application
servers.

We'll wrap the chapter up with another new spin on markup that makes it still a compelling
proposition, even with the emergence of J2ME and Flash. Scalar Vector Graphics, the new
graphics markup language from W3C, will expand our imagination regarding the role that
graphics, already a heavily influence on browser application design, will take in the very near term.

Java 2 Micro Edition

Everything about Java has been made possible by the fact that computers, starting with typical
Intel desktops, are faster and bigger. What would have been unheard of a short decade ago is made
possible by the continual raising of the bar representing the minimum memory footprint and
computing power of desktops. The same can be said of mobile devices and appliances.

http://kxml.enhydra.org/

 279

There's a new style of consumer device application development that takes advantage of a new
generation of devices, incorporating yet another edition of the ever-expanding Sun Java 2 platform.
Typically, a technology like Java will have its limits, operating only in the environments that
make sense. Sun Microsystems has, however, defined a flavor of the Java runtime environment
and API for the small environments of mobile devices and appliances.

J2ME defines a pared-down version of the J2SE environment to account for the rarified
dimensions of mobile devices, such as phones, PDAs, and car navigational units, as well as
plugged-in home appliances. But this is only part of the scope of J2ME. It also addresses the real-
world topics of deploying J2ME applications and their security model. And because they are
clearly well-suited to the needs of both small and large enterprises that support field personnel, as
well as the connected consumer, J2ME addresses an API that is rich in network capabilities.

J2ME in the Wireless Space

Assuming you believe that Java can run effectively on mobile devices, there are some real
advantages of the microbrowser-driven applications we discussed in Chapter 11:

• Security—J2ME supports the HTTPS protocol for secure Internet connections.
• No gateways—J2ME devices support a complete IP stack. Each device has its own IP

address.
• Standard GUI—J2ME features a standard graphical user interface across the devices that

it supports. These GUI components will be familiar to Java Foundation Class (Swing)
developers.

However, even J2ME has its downside. It is, after all, a brand new technology driven by a
growing number of handset makers including Motorola, Nextel, and NTT DoCoMo:

• Existing HTML sites/solutions must be rewritten.
• The number of GUI components is somewhat limited at this point. Generally, text, text

boxes, check boxes, and low-level graphics are supported.
• With browsers, installation is a no-brainer, as long as the application and your browser

are compatible. With J2ME, there is a device installation element to consider. The good
news is that over-the-air installation will be available soon, although it will be on a per-
vendor basis for now.

• J2ME requires a different kind of UI designer, one who is familiar with JFC-style
development. HTML designers add little value in developing J2ME presentations. If
you're using XMLC to drive multiple presentations, you're faced with new challenges
when J2ME and/or Flash are part of the mix.

The J2ME Device Environment

Although J2ME addresses devices with a capacity of much greater than 2 MB, we will focus on
the small devices powered by the J2ME-defined K Virtual Machine. The KVM is designed and
tuned to operate in environments of less than 1MB.

J2ME configurations are defined to reflect the realistic capabilities of devices with small memory,
small screens, and small keyboards (or even smaller keypads). For instance, the profile of a typical
J2ME phone and its operating environment is assumed to be the following:

• 128KB to 1MB of memory
• 16- or 32-bit CPU
• Low bandwidth
• Intermittently connected

 280

Below a certain size, devices tend to take on wildly different capabilities, and therefore,
applications or roles. As a result, specifications that reflect particular devices and the industries
that they serve (for example, consumer, medical, automobile) are necessary in order to define Java
libraries and APIs that maximize, not underpower or overwhelm their intended environment:

• CLDC— The Connected, Limited Device Configuration profile defines the lowest
common denominator reflected by J2ME phones, such as Motorola's iDEN. It comprises
the more generic core Java APIs for developing wireless applications. It is essentially a
slimmed down version of the Java 2 Standard Edition (J2SE) tailored for small devices.

• MIDP—The Mobile Information Device Profile builds on the CLDC to make it possible
to develop and operate very modern applications for mobile devices. MIDP specifies the
Java libraries that address GUI, timers, persistent storage, and networking.

• Vendor—The J2ME specification permits device manufacturers to add their own
proprietary APIs. These features give application developers more device-specific options,
such as querying the environment for remaining power and signal strength.

The rest of our discussion will focus on the MIDP profile for developing mobile applications.

XML for J2ME Client/Server Communication

The extension of the Java 2 platform to mobile devices creates a natural association that conjures
up images of smart devices roaming the countryside, checking in on a regular basis with
application servers back at home. In fact, as we'll discuss soon and as illustrated in Figure 12.1, a
similar scenario applies to mobile devices, such as the Palm PDA, supporting Flash applications
powered by an XML engine, introduced in Flash 5.

Figure 12.1. XML-driven data linking the J2ME/Flash client and the application
server.

Also, the reality of the last 20 years is that devices get smaller, faster, and grow in internal
capacity. The implications of these circumstances and industry trends have been recognized by the
Enhydra project.

J2ME provides a network package that features the Generic Connection framework that supports
HTTP requests and responses over both packet-based and circuit-switched networks. This
functionality is sufficient for others to support mechanisms that define application specific
protocols to support client/server style application architectures.

Leveraging Enhydra XMLC as an XML generation tool, the Enhydra.org project has grown to
enhance the J2ME environment with the tools necessary to support XML as the basis for
client/server protocols. Figure 12.1 illustrates the role that XMLC, as well as a J2ME client(or
Flash client, as we'll discuss later), can serve in communicating over HTTP using an XML

http://enhydra.org/

 281

protocol that is application-specific in its knowledge, but generic in its use of XML as a language
foundation.

Let's discuss some of the missing technology pieces required to support this scenario, all of which
are addressed in the Enhydra.org open source project.

EnhydraME and XMLC

Established in August 2001, the EnhydraME (Enhydra Micro Edition) project at me.enhydra.org is
an effort that is defined to unify a set of related sub-projects that collectively target two goals:

• Enable the integration of Java micro devices with the back-end of enterprise computing,
represented by application servers.

• Define a self-sufficient "micro application server" capable of serving other devices in a
highly distributed environment. This configuration also enables J2ME devices to gain
access to the new world of SOAP-based Web services.

EnhydraME is a collection of many projects that compose the EnhydraME framework, all tuned
for the unique attributes of tiny devices. Some of these technologies include the following:

• kXML—A complete XML parser for micro Java environments. kXML incorporates
kDOM for representing parsed XML in a DOM view.

• kSOAP—A fully capable SOAP messaging component for wireless devices.
• kHTTP—An HTTP server for sending and receiving HTML on wireless devices.

There are numerous other projects under the umbrella of EnhydraME, including kJMS and kUDDI,
but they are too new to focus on at this point. Our interest is in kXML and kDOM as the missing
pieces in a client/server scenario involving J2ME devices.

Enhydra kXML

Much of the design of EnhydraME is based on the assumption that XML will be the custom
dialect-enabling protocol that links client and server.

Predictably, we are not interested in building standalone J2ME applications. Instead, we want to
leverage the best of what these new devices have to offer to enhance the value of the ShowFloor
application. How are J2ME devices different than the WAP mobile devices we've talked about
thus far?

• They have their own GUI library for rendering a simple set of "widgets," such as forms,
text boxes, buttons, and lists, as well as low-level graphics that turn them into excellent
"monitoring" tools.

• They have the capability make data locally persistent, using the built-in J2ME persistence
library. Access a server, download data and, if you disconnect, you still have the data you
need.

• Although devices that support WML can leverage WMLscript, the J2ME device can
simply do more logically and be more easily extended within the space that it has, with
new functionality. An example of this would be business-specific Java classes.

It is probably no great shock that we want to leverage XML and Enhydra XMLC to communicate
with a J2ME phone. After all, we do the same with WAP and i-mode devices.

http://enhydra.org/
http://me.enhydra.org/

 282

What is different in the J2ME-to-Enhydra scenario is that the computational aspects of the overall
application are a cleaner division between business logic, as composed and processed on the
server, and display logic, as generated by the J2ME application. The role of XMLC will be to
generate and process XML that has a pure data view, as opposed to markup intended to drive a
browser. The display work will be done by the J2ME application.

A Lean XML Parser for J2ME

Each client, whether it's an application or a mobile phone, must contain an XML parser in order to
decompose or generate an XML object. A number of options exist. We will use kXML from the
EnhydraME project on the J2ME device end of the pipe to Enhydra and Enhydra XMLC. Between
the two, we will create a J2ME application as driven by data from an application server using
XMLC.

kXML is a lean XML API for the Java 2 Micro Edition (J2ME). It was originally developed at the
AI Unit of the University of Dortmund as a side product of the COMRIS project. It now lives at
kxml.enhydra.org, where it is chaired by Stefan Haustein, co-author of Java 2 Micro Edition
(J2ME) Application Development from Sams.

kXML is different than other XML parsers in that it avoids the overhead and large footprint of
building a full DOM. It also avoids the heavy processing requirements of an event-based model,
like the SAX parser.

Pull Versus Push Parser

kXML is a pull-based processor that gives the application direct control of XML data as it is read.
The application takes control, parsing the tree recursively, rendering the entire DOM quickly and
efficiently.

In contrast, the well-established SAX XML parser employs a push model, where events are
generated and sent to the application. Events correspond to the encountering of an element or
characters. In this "throw over the wall" manner, no actual data structure is created, leaving the
application to come up with its own processing strategy. The application must also figure out
where it is at before acting on the event.

The kXML parser is driven by the application. Its interface is a bit more modular in comparison to
SAX, designed to be taken over by the application. Recursion and the use of the application's own
variables are used to collect data. The result is a smaller footprint, thanks to the absence of a self-
driven parser and the additional code required of the application to determine what to do with the
data.

DOMs on Pilots?

An optional kDOM library is provided by kXML for those who want that pre-built tree view of
incoming data. As you might have guessed, this is a pared-down DOM parser that was designed to
operate within the restricted set of MIDP-defined classes. Its design center also assumes the
tightest restrictions on available memory. Perhaps as MIDP is expanded to account for the
improved capacity of these devices, JDOM (http://www.jdom.org) might become an option as
well.

The ShowFloor Admin Application

http://kxml.enhydra.org/
http://www.jdom.org/

 283

Let's introduce a mobile application of the ShowFloor application. This application demonstrates
some basic J2ME capabilities, such as using the high-level user interface library and the network
connection package. But, in this chapter, we're going to review the portions of the application that
do the following:

• Define an application-specific protocol based on XML
• Use kXML to parse XML delivered from Enhydra XMLC
• Communicate with an application server from a J2ME client

Defining FloorAdmin and BoothInfoXML

Every show must have administrators, floating from booth to booth, fixing problems that vendors
might be experiencing, such as connectivity to the Internet. Let's look at some of the components
of a midlet application that give mobile ShowFloor administrators the capability to look up booth
information on a per-vendor basis. This information will include contact person, booth number,
and assigned IP address.

Using their J2ME phone, a "Floor Admin" will be able to enter the name of a vendor and receive
the formatted data back from the SFA server in the back office. As a two-way client server
application, the Floor Admin can update any incorrect information that he or she discovers.

To connect the J2ME client with the rest of the application residing on the application server, we'll
define a protocol language, shown in Listing 12.1, in the form of an XML dialect defined by the
DTD BoothInfoXML. Data, organized to conform to this protocol, will be processed by a kXML
parser on the client, and XMLC in the server presentation object. The DTD describes one to many
vendors.

Listing 12.1 BoothInfoXML.dtd

<!—- This DTD is dedicated to serving the BoothRater Application>
<!ELEMENT FloorAdmin (Vendor+)
<!ELEMENT Vendor(Name, Contact, BoothNum, IPadd, Href)>
<!ATTLIST Vendor id ID #IMPLIED>
<!ELEMENT Name (#PCDATA)>
<!ATTLIST Vendor id ID #IMPLIED>
<!ELEMENT Contact (#PCDATA)>
<!ATTLIST Contact id ID #IMPLIED>
<!ELEMENT BoothNum (#PCDATA)>
<!ATTLIST BoothNum id ID #IMPLIED>
<!ELEMENT IPadd (#PCDATA)>
<!ATTLIST IPadd id ID #IMPLIED
 HREF CDATA #IMPLIED>

This could easily be redefined to represent a collection of vendors that could be downloaded at
once, taking advantage of MIDP's persistence library. This capability would give our Floor Admin
a significant advantage over flaky mobile connections deep in the bowels of the San Jose
Convention Center.

BoothInfoXML is sufficiently defined to standardize the data required by the J2ME application.
We've introduced id attributes as the hooks we'll use for Enhydra XMLC to populate the XML
template. The last element, HREF, gives us some flexibility by binding the URL with the data in
the event we relocate. For example, the Floor Admin might update the IP address for the booth.
The HREF attribute would contain the URL representing the presentation object or servlet back on
the server that would process the request to update the IP address.

Elements of the FloorAdmin Midlet

 284

Let's examine FloorAdmin and the source code examples that best illustrate how a J2ME device
issues a request to the server, then processes the response.

Listing 12.2, FloorAdmin.java, builds the display that will ask the Floor Admin to enter a
vendor name into a J2ME textbox. commandAction() processes the answer when the user
selects OK.

Listing 12.2 FloorAdmin.java

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class FloorAdmin extends MIDlet implements CommandListener {
 private TextBox textbox;
 private Display display;
 private Command okCommand okCmd = new Command("OK", Command.OK, 1);
 private Command exitCommand exitCmd = new Command("Exit",
Command.EXIT, 1);

 public BoothAdmin() {
 textBox = new TextBox("Enter vendor name:");
 textBox.addCommand(okCmd);
 textBox.addCommand(exitCmd);
 textBox.setCommandListener(this);

 display = Display.getDisplay(this);
 }

 pubilc pauseApp() { }

 public void destroyApp(boolean unconditional) {
 textBox = null;
 okCmd = null;
 exitCmd = null;
 display = null;
 }
 public void commandAction(Command c, Displayable d) {
 if (d == textbox && c == okCmd) {
 //Retrieve the string representing the vendor's name.
 String t = textBox.getString();
 if (t.length() > 0) {
 BoothInfoScreen(t);
 }
 } else if (c == exitCmd) {
 destroyApp(true);
 notifyDestroyed();
 }
 }
}

BoothInfoScreen() in Listing 12.3 is an extension of a form and does two things. First, it
makes a request for the vendor data by passing the request-specific URL to handleBooth().
Then, with data in hand (in the form of a Vector), it populates a displayable StringItem that
presents a label "BoothInfo:", followed by the vendor information.

Listing 12.3 BoothInfoScreen.java

public class BoothInfoScreen extends Form {

 285

 private StringItem boothInfo = new StringItem("BoothInfo:", "");
 private Vector boothData = new Vector();

 private int VNAME_FIELD = 0;
 private int VCONTACT_FIELD = 1;
 private int VBOOTHNUM_FIELD = 2;
 private int VIPADD_FIELD = 3;

 public void loadDetails(String ven) throws SFAException {
 String url = "http://www.otterpod.com/sfa/FloorAdmin.po?vendor="
+ ven);
 try {
 // Fetch vector with vendor booth information.
 boothData = services.handleBooth(url);
 // Populate StringItem (Label...followed by vendor info)
 populate();
 } catch (Exception ex) {
 throw new SFAException(ex);
 }

 }
 public void populate() {
 if (boothData != null && boothData.size() >= 4) {
 boothInfo.setText((String) boothData.elementAt(VNAME_FIELD) +
"\ n"
 + (String) boothData.elementAt(VCONTACT_FIELD) + "\ n"
 + (String) boothData.elementAt(VBOOTHNUM_FIELD) + "\ n"
 + (String) boothData.elementAt(VIPADD_FIELD));
 }
 }
}

The method handleBooth() is responsible for taking the kDOM document generated by the
getDocumentFromURL() method as a result of decomposing the HTTP request, and delivering
it in the BoothInfoXML dialect. Before we look at handleBooth(), the method
getDocumentFromURL() is shown here:

public static Document getDocumentFromURL(String url) throws
Exception {
 Document doc = null;
 try {
 HttpConnection hc = (HttpConnection) Connector.open(url);

 // Set the request method and headers
 hc.setRequestMethod(hc.GET);
 hc.setRequestProperty("Accept", "text/xml");
 hc.setRequestProperty("Content-Language", "en-US");

 // Opening the InputStream will open the connection
 // and read the HTTP headers.
 InputStream is = hc.openInputStream();
 DefaultParser parser =
 new DefaultParser(new InputStreamReader(is));
 doc = new Document();
 doc.parse(parser);

 if (is != null) {
 is.close();
 }
 if (hc != null) {

 286

 hc.close();
 }

 } catch (Exception ex) {
 throw new Exception("Error connectoing to server " +
 ex.getMessage());
 }
 return doc;
}

Using the J2ME network library, getDocumentFromURL() formats the HTTP request, then
opens a stream to wait for the response. The kDOM DefaultParser() reads the
BoothInfoXML input stream. The parse() method of Document() converts the
BoothInfoXML content into a DOM that is then returned to HandleBooth, shown in Listing
12.4.

Listing 12.4 The handleBooth Method

// This method is written to assume that only one vendor is
// included in the XML file.
// DefaultElement is kDOM's version of the standard DOM's Element
public Vector handleBooth(String url) throws SFAException{
 Vector boothInfo = new Vector(4, 1);
 int childIndex = 0;
 String errorMessage = null;
 try {
 // Fetch data via HTTP request back to Enhydra.
 Document boothInfoDoc = getDocumentFromURL(url);
 DefaultElement root = (DefaultElement)
boothInfoDoc.getRootElement();
 DefaultElement child;
 //Vendor name
 child = (DefaultElement)root.getChild(childIndex++);
 boothInfo.addElement((String)child.getChild(0));
 //Contact name
 child = (DefaultElement)root.getChild(childIndex++);
 boothInfo.addElement((String)child.getChild(0));
 //Booth number
 child = (DefaultElement)root.getChild(childIndex++);
 boothInfo.addElement((String)child.getChild(0));
 //IP Address
 child = (DefaultElement)root.getChild(childIndex++);
 boothInfo.addElement((String)child.getChild(0));
 // From the HREF associated with IPaddress, pointing
 // back to the servlet/pres object that can update the IP address.

boothInfo.addElement((String)((Attribute)child.getChild(childIndex).
getAttribute("href")).getValue());

 } catch (Exception ex) {
 return null;
 }

 return boothInfo;
}

handleBooth() systematically extracts the data from the DOM document object into a Vector
that is eventually returned to loadDetails(), which invokes populate() to update the
StringItem for eventual display.

 287

The output from the StringItem variable boothInfo looks something like the following:

BoothInfo:
Compaq
Jack Doe
334
127.0.0.1

Building a J2ME Application

Everything you need to build a J2ME application is downloadable from Sun's J2ME Web site. The
site also references how to develop applications for third party handset vendors, such as Palm,
RIM, or Motorola. The Sun J2ME Wireless Toolkit provides the following components:

• Device emulators that mimic the behavior of selected actual phone devices.
• A simple graphical development environment called KtoolBar.
• A bytecode pre-verifier that pre-verifies byte code prior to packaging.

For fans of the Forte IDE, a J2ME Wireless Module plug-in is also provided.

Compiling and Deploying the Application

The compilation of midlets reflects the general J2SE scheme for turning Java source code into
classes and jar files of classes:

javac –g:none –d /tmp/j2meclasses –boothclasspath
/usr/local/jwmewtlkt/lib/midpapi.zip
–classpath /tmp/j2meclasses;classes <SRCFILES>

There are, however, a few J2ME-specific features. The pre-verification process of J2SE and the
JVM is normally hidden from the developer. It's how the JVM optimizes the bytecode for
performance gains. In order to keep the kJVM (micro JVM) as small as possible for J2ME devices,
this process is performed prior to deployment in order to offload this task from the kVM.

The preceding compilation uses /tmp/j2meclasses to hold the unverified classes. After the
compiled classes are verified, the preverifier will store them in the classes directory.

Another J2ME wrinkle is the Java Application Descriptor (JAD) file. Unlike the manifest that is
part of the jar file of midlet classes, the JAD remains outside the jar and is key to the eventual
emergence of over-the-air midlet deployments. The JAD for the FloorAdmin application is the
following:

MIDlet-Name: FloorAdmin Application
MIDlet-Version: 0.1
MIDlet-Vendor: David H. Young and Sams Publishing
MIDlet-Description: Demo of SFA Floor App and J2ME
MicroEdition-Profile: MIDP-1.0
MicroEdition-Configuration: CLDC-1.0
Connection-address: tcp://0.0.0.0:3369/
MIDlet-1: FloorApp,com.otterpod.sfa.floorApp

 288

Can I Download a J2ME Application Over the Net?

You might assume that a J2ME specification would address wireless installation of
J2ME midlets. However, this is a topic that currently the handset industry has yet to deal
with. Application loaders are a typical offering from vendors such as Motorola and
Nextel.

Having said that, wireless provisioning is the proposed new buzz phrase that addresses
how MIDp applications are distributed to wireless devices. A Sun Java Community
Process (JCP) MIDP expert group called JSR 37, "Mobile Information Device Profile
for the J2ME Platform," is in the process of addressing wireless provisioning. "Over-
the-Air User Initiated Provisioning for Mobile Information Device Profile," is a JSR 37
document that describes how provisioning works.

For a complete description and implementation of the FloorAdmin application, be sure to refer to
the CD.

Flash

We're all familiar with Flash graphics and animation. Like any tool, in the right hands it can add
excellent value to Web sites. However, we've also seen examples of how it can be used to turn any
Web site into something ponderous and overwhelming.

But there's a new angle to Flash that makes it very interesting to application architects. With the
release of Flash 5 came an embedded XML parser. This simple but powerful development
promises to expand the role of Flash clients in any environment that requires client/server
application development.

As with our J2ME discussion, XMLC now finds itself in the role of delivering application-specific
XML protocols between the presentation layer of a Java application server and the XML parser on
the client side.

Flash ActionScript

Another nice development with Flash 5 is the more JavaScript-like flavor of ActionScript, the
Flash scripting language. ActionScript is what gives Flash its animation pizzazz,
programmatically glueing Flash elements (graphics, animations, and audio) together in a non-
linear fashion to make possible high-end, professional grade movies and user interactions.

With access to XML-formatted information from back office servers, ActionScript and Flash are
capable of delivering real-time presentations and interactions, reducing the need to deploy new
Flash applications.

Let's take a brief introductory look at how XML parsing is accomplished from ActionScript.

First of all, let's look at an application-specific XML dialect, incorporating its DTD in file, that is
generated by XMLC to literally deliver the news to a Flash application:

<?xml version="1.0"?>
<!DOCTYPE sfanews [
<!ELEMENT eFolks (newsitem+)>
<!ELEMENT newsitem (title,story)>

 289

<!ELEMENT title (#PCDATA)>
<!ELEMENT story (#PCDATA)>
]>
<sfanews>
 <newsitem id="newsitem">
 <title id="title">IBM announces Web Services!></title>
 <story id="story">IBM has made Web Services available as...
</story>
 </newsitem>
 <newsitem class="mockup">
 <title>Microsoft announces Web Services!></title>
 <story>Microsoft has made Web Services available as... </story>
 </newsitem>
</sfanews>

This XML file is compiled into a DOM template, updated with current news by the servlet or
presentation object using XMLC access methods (for example, getNewsitemElement(),
setTextTitle(), or setTextStory()).

On the client side, ActionScript has the capability to request the news feed from the server's
presentation servlet. This can be done with a Flash timer event or the release of a button. Let's
assume that an SFA visitor is pushing an Update News button at a kiosk on the show floor. The
Flash frame (as in a series of frames that represents a movie) that is associated with the button
executes the ActionScript:

on (release) {
 gotoAndPlay (2)
}

The (2) refers to a second frame that contains the following script, responsible for fetching the
news feed:

newsXML = new XML();
newsXML.load("http://www.otterpod.com/SFA/newsfeed.po");
display= "Stand by for News!..."
newsxML.onload = extractNews;

This script sets the stage for invoking the ActionScript function extractNews to process the
XML after it is fully loaded from newsfeed.po. XML() is the constructor object. newsMXL is
the object that stores the XML data. onload indicates the method to call when loading is
complete.

The variable display is associated with a text field on the Flash screen, keeping the user
informed. The extractNews function is located in the same frame:

function extractNews() {
 rootNode = new XML();
 newsList = new Array();
 rootNode = this.lastChild;
 newsList = rootNode.childNodes;
..for (i=1; i<=newsList.length; i += 2> {
 display += newsList[i];
 }
}

This tight little script grabs each news item and delivers it to the Flash movie. rootNode, as it
implies, is allocated to store the root node of the document. The root node is found by using the

 290

last child's node name. That's because the closing tag's element name, </newsitem>, is the same
as its matching element <newsitem>. Therefore,

rootNode = this.lastChild

does the trick. Now we can add the child nodes to the array with

newsList = rootNode.childNodes;

The preceding loop then extracts the array's elements to identify the child nodes (<title> and
<story>) of each <newsitem> element. Again, the variable display is the pipeline back to
the Flash movie into which the contents of the news items are dumped.

A nice implementation feature of the Flash XML parser is that it runs in its own thread. Other user
interactions or timed events can go their own way while other parts of Flash can periodically or
spontaneously fetch updated news information.

Here's a quick review of the key methods for integrating Flash with an XMLC-driven application:

• XML.send— Sends the XML object back to a URL. The response is displayed in the
browser window.

• XML.load— Downloads XML from a URL, placing the content in an ActionScript
XML object.

• XML.sendAndLoad— This method is key to developing a two-way protocol connection
with an application server. It sends the XML object back to a specified URL, such as
processVisitorResponse.po, or any standard servlet that might also be powered
by XMLC. The response that comes back from the servlet is stored in an ActionScript
XML object to determine the success of the exchange.

Keep an eye on Flash. Macromedia is now working with PDA and other handset makers to
support Flash on mobile devices. In some ways, it's easier to use Flash than J2ME, thanks in large
part to its excellent design studio tools, an area where J2ME has much catching up to do.

Dynamic Graphics with SVG and XMLC

Have you ever tried making a dynamic graph with an HTML table, manipulating its width, height,
and color attributes, wishing you didn't have to resort to such a kludge? There is now a new W3C-
standard XML language for generating high-end graphics.

Scalar Vector Graphics (SVG), is a language for generating rich, two-dimensional graphical
content. Because it is written in XML, SVG content can be generated from server-side sources of
real-time information, such as diagnostics or e-commerce statistics.

SVG supports three types of graphic objects:

• Vector graphic shapes (for example, path of lines and curves)
• Images
• Text

SVG then gives you the capability to manipulate all these objects, changing their attributes color,
stroke, and so on, as well as performing high-end transformations, such as rotation.

 291

It's also possible to build SVG presentations that are interactive and highly dynamic. The
interactive side is best driven by JavaScript extensions of the SVG language. For the dynamic side,
we want to use Enhydra XMLC.

One project that makes extensive use of the client-side, dynamic portion of SVG is Batik, an open
source Apache project hosted from xml.apache.org/batik. This project is developing a set of
modules that can be mixed and matched to provide SVG solutions using Java. Sample modules are
SVG parsers, SVG generators, and SVG DOM implementations.

The W3G folks have included an extensive SVG DOM API extension. As of this writing, however,
there is no Enhydra XMLC implementation. However, as we demonstrated with VoiceXML,
there's nothing to stop us from taking advantage of the id attribute and the use of a few low-level
DOM APIs to build incorporated SVG elements into our SFA application. The most recent release
of the SVG specification, including DTD and DOM API descriptions, can be found at
http://www.w3.org/tr/2001/rec-svg-20010904/.

To demonstrate an extremely simple use of SVG, we'll build a simple graph generator presentation,
illustrating how XMLC and SVG can be used to create compelling, data-driven dynamic graphs.
But first, let's review a subset of the SVG language.

SVG Versus Raster Images

There are at least two views of how graphical images can be described. One is the world of raster
formats, represented by JPEG, GIF, and PNG. These are "as-is" graphics, describing every pixel
of the graphic. When you zoom in on a raster image, you soon see a distortion effect often referred
to as pixelation caused by the fact that a raster image can't react or adjust to the changes in the
rendering landscape.

Vector graphics, on the other hand, represent a descriptive language where objects are represented
by the paths of lines and curves. Additional information describes their relative orientation,
making it simple for these objects to "react" in a zoom condition in order to present themselves
accurately at closer inspection. Scalar refers to their ability to scale. A handy feature of vector
graphics and SVG is that you can incorporate raster images when the need arises.

SVG has the ability to turn mundane HTML development into something very interesting with
Enhydra XMLC. There are many aspects of SVG that make it a useful component when designers
and developers sit down to consider presentation strategies:

• An SVG graphic is stored as text-based instructions, all of which are interpreted at the
time it is rendered. Because it's text-based, it's editable!

• It's a Web-tailored technology.
• It's easy to localize. Even a string embedded in a graphic can be programmatically

updated from English to German.
• Tools like Adobe Illustrator generate SVG output, making it easy to create high-end

graphics, save them as SVG, insert ids, compile it into a DOM template, then manipulate
it as an Enhydra presentation.

• It's vastly more scalable in terms of resolution quality, as compared to bitmap images that
have no adaptive capability. This makes SVG applicable to all sizes of devices. It also
takes up less bandwidth as compared to bitmap images when transferred by HTTP to a
client.

Perhaps the most exciting potential of SVG is that, as an XML language, it will integrate
seamlessly with other XML languages, including HTML.

Let's take a quick look at SVG, then we'll describe some of the more common, useful elements:

http://xml.apache.org/batik
http://www.w3.org/tr/2001/rec-svg-20010904/

 292

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
 "http://www.w3.org/TR/2001/PR-SVG-20010719/
 DTD/svg10.dtd">
<svg width="300" height="200">
<rect x="0" y="0" width="20" height="40"
style="fill:blue;stroke:green;"/>
</svg>

The preceding SVG XML defines a 300x200 pixel canvas with the <svg> element. On that
canvas, it draws a rectangle with the dimensions and style specified in the <rect> element. The
rectangle is filled with blue and its outside path is outlined by a green-colored stroke.

Normally, colors are specified in hexadecimal. However, SVG also recognizes 128 pre-defined
color names.

A Quick Introduction to the SVG Language

Let's review some representative elements of the SVG language, listed in Table 12.1. You'll need
only a small portion of the language to achieve the generation of some pretty impressive graphics.

Table 12.1. Selected SVG Elements
Element or
Attribute

Description

<svg> This is the base element that establishes the initial viewport. You define the
initial height and width of the SVG image.

<g> Used for grouping several <svg> elements, <g> is used to transform the
objects it contains, changing their rotation, shape, size, and position.

<desc> This is a handy, non-displayable element for describing the objects in the
file.

<defs> Use this element for code re-use by grouping one or more graphics
elements that can then be referenced one or more times from other parts of
the document.

<use> This element is used to reference a <symbol>, <g>, <svg>, <rect>,
<line> or other elements defined elsewhere in the document. <use>
references each of these by their id attribute.

<image> This element references bitmap graphics files, such as PNG, GIF, or JPEG.
Also used for importing other files of type text/xml+svg.

viewbox This is not an element, but an attribute of <svg>. viewbox provides a view
on the infinite size of the SVG canvas. The first pair of x, y coordinates
indicates the upper-left corner of the view box; the second pair defines the
lower-right corner.

A Demo Report Generator

We've covered a small portion of the SVG elements and their capabilities. We're now going to
create a small demonstration application using <svg> and <rect> for describing rectangles.

Recall that in Chapter 11, "Wireless Markup Presentations," we discussed the mySFA application
that gave subscribers the capability to enter notes on a per-vendor basis, which they could later
retrieve by voice or phone. The Vendor Interest report will generate a bar chart that indicates the
number of notes entered per vendor, suggesting to a vendor how they did in terms of general
interest in their presence at the show.

 293

The Vendor Interest report is composed of two presentation objects. The first,
ReportPresentation.po, dynamically generates the hosting HTML content. It refers to the
second presentation object, TableReport.po, using the HTML <object> element.

Listing 12.5 shows how we're using an HTML table to host the SVG graphic, integrated into the
HTML document using the <object> element.

Listing 12.5 Report.html

<html>
<body>
<p>Welcome to the "Vendor Interest" report. This report
graphically displays the amount of interest in each vendor
based on the number of notes entered by mySFA subscribers.
<p>Of the 100 vendors participating
in the show, there were an average of
10 notes entered by subscribers.
<p>
<table border=5>
<tr>
<td>
<object width="200" height="100"
data="http://localhost:9000/ex6/TableReport.po"
type="image/svg+xml">
To view this graphical report, you must download an SVG Viewer.
You can find one at Adobe.
</object>
</td>
</tr>
</table>
</body>
</html>

The SVG template that we've created to represent a bar graph is listed in Listing 12.6. The <svg>
element defines the overall dimensions of the graphic. A rectangle element is used to represent a
bar, which is accompanied by a vendor name in alignment with the bar at the far right.

Listing 12.6 TableReport.svg

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20000303 Stylable//EN"
"http://www.w3.org/TR/2000/
03/WD-SVG-20000303/DTD/svg-20000303 -stylable.dtd">
<svg width="300" height="200">
 <rect id="meterTemplate" x="0" y="0" width="80" height="16"
style="fill:orange;stroke:
none;"/>
 <text id="vendorName" x="85" y="12" style="fill:black">
Vendor A</text>
</svg>

TableReport.java is the presentation object that will manipulate the SVG template, adding
new bars for each vendor included in the report. Shown in Listing 12.7, we'll generate four bars
using hard-coded data. We've added a wrinkle to the application that renders the color of the bar in
green or red, depending on whether the bar's value falls below or exceeds the arbitrarily chosen
value of 40.

Listing 12.7 TableReport.java

 294

package examples.presentation.ex6;

import java.util.*;
import com.lutris.xml.xmlc.*;
import com.lutris.appserver.server.httpPresentation.*;
import org.w3c.dom.*;
import org.w3c.dom.html.*;

public class TableReport implements HttpPresentation {

 public static final String REDBAR = "fill:red;stroke:black";
 public static final String GREENBAR = "fill:green;stroke:black";
 public static final int VERTICAL_TEXT_PADDING = 12;
 public static final int VERTICAL_BAR_SPACING = 24;
 public static final int HORIZ_TEXT_SPACING = 5;

 public void run(HttpPresentationComms comms)
 throws HttpPresentationException {
 // hardcoded values.
 String vendors[] = { "Company A", "Company B", "Company C",
"Company D"} ;
 int vendorNoteCount[] = { 38, 80, 20, 44 } ;

 TableReportHTML table =

(TableReportHTML)comms.xmlcFactory.create(TableReportHTML.class);

 //Retrieve DOM locations from the xmlc-generated accessor methods.
 Element rect = table.getElementMeterTemplate();
 Element textElem = table.getElementVendorName();

 Node parent = rect.getParentNode();

 int verticalSpacing = 0;
 int vspace = 0;

 for (int i = 0; i < vendors.length; i++) {
 //Deal with the <rect> element template first.
 //x=0 always... to start from left margin.
 //y=<vertical amount>
 rect.setAttribute("y","" + verticalSpacing);

 //width: length of bar.
 rect.setAttribute("width", "" + vendorNoteCount[i]);

 //Having some fun with color... 40 is an arbitrary value.
 rect.setAttribute("style",GREENBAR);
 if (vendorNoteCount[i] < 40) {
 rect.setAttribute("style",REDBAR);
 }

 //Now, let's deal with the Text Element.
 //The idea is to keep the text in line with the bar.
 table.setTextVendorName(vendors[i]);

 //x defines the horizontal...
 int s = vendorNoteCount[i] + HORIZ_TEXT_SPACING;
 textElem.setAttribute("x", "" + s);

 //y defines the vertical...
 vspace = verticalSpacing + VERTICAL_TEXT_PADDING;

 295

 textElem.setAttribute("y", "" + vspace);
 verticalSpacing = verticalSpacing + VERTICAL_BAR_SPACING;
 //remember. <rect> and <text> are peers, so you must
 //clone both of them.
 Node clone = rect.cloneNode(true);
 parent.appendChild(clone);
 clone = textElem.cloneNode(true);
 parent.appendChild(clone);
 }
 parent.removeChild(rect);
 parent.removeChild(textElem);

 //Because we're not using an SVG XMLC factory, we've got to
 //update the DOM with the correct MIME type.
 comms.response.setContentType("image/svg+xml");
 comms.response.writeDOM(table);
 }
}

As we've seen repeatedly, the algorithm for updating the DOM template representing the SVG
graph is relatively straightforward. id attributes are defined in the SVG DTD, and therefore
support XMLC's generation of accessor methods.

Because there is no make rule for SVG files, we've coerced Enhydra into simply treating the SVG
file as an HTML file during XMLC compilation. Another more elegant route would have been to
edit the Enhydra make file system with an SVG-specific build rule. Also, there is no SVG DOM
factory, so we've updated the document's content type with a MIME of type svg+xml.

Figure 12.2 shows the results of our demonstration application.

Figure 12.2. Report with dynamically-generated SVG graph.

You will need an SVG Viewer for your browser. There are multiple sources, including

• http://www.adobe.com/svg/
• http://sis.cmis.csiro.au/svg/
• http://xml.apache.org/batik/dist

http://www.adobe.com/svg/
http://sis.cmis.csiro.au/svg/
http://xml.apache.org/batik/dist

 296

The recognized SVG MIME types are image/svg+xml, image/svg-xml, and image/svg.

Summary

The goal of this chapter was to introduce a different role for XMLC development, using it to
generate application-specific, XML-based protocols. Requiring an XML parsing and processing
capability at both ends, the need for smart clients such as J2ME and Flash becomes very
interesting, bringing to mind more traditional client/server application development.

Although the industry will determine whether J2ME is to achieve the acceptance of the rest of the
Java 2 specifications, Flash has clearly become a common component of high-end Web sites. By
adding XML parser support to Flash, Macromedia has put a new light on the role of Flash, and as
Flash becomes more prevalent on PDAs, for example, an interesting smart client competition may
emerge.

Wrapping up, we've thrown another technology into the mix. SVG is also something to watch.
Vastly superior to bitmap graphics, SVG's scaling capability makes it an interesting candidate for
supporting browser-based clients, in part because of its capability to scale to a wide range of
presentation footprints with little loss in rendering quality. In general, when blended with HTML,
its use makes for an interesting alternative to the reliance on the costly overhead of unwieldy
raster graphics.

 297

Chapter 13. Barracuda Presentation Framework
IN THIS CHAPTER

• XMLC: Where the Value Is
• A Presentation Framework for XMLC
• A Collection of Capabilities
• Example : VendorSpotlight
• Directives
• Localization
• Summary

It seems only fitting that this last chapter should address the probable next step in the evolution of
Enhydra XMLC. Enhydra Barracuda is a presentation framework that goes further than XMLC to
present a set of easy-to-use modules based on a component view of presentation development.
Starting with the traditional view of client/server development tools, Barracuda builds on the
fundamental value of XMLC to natively separate markup from Java logic to abstract away the
low-level detail work of DOM manipulation.

The open source Barracuda project resides at Barracuda.enhydra.org, where it is chaired by its
founder, Christian Cryder. Christian has defined the Barracuda framework to address six areas of
common presentation needs, including forms validation, client-side properties, event-handling,
and localization, as well as a component view for linking the Model portion of MVC directly to
areas of the DOM template.

For developers of Swing (Java Foundation Class), Motif, or Windows user interfaces, the concepts
of Barracuda development will look very familiar. There's no way to do justice to everything that
Barracuda has to offer, so this chapter will do its best to bring out some of the key functional
aspects of Barracuda development and how it simplifies the task of XMLC presentation
programming.

Note

This was probably the easiest chapter to write, thanks to the incredibly complete repository of
online documents, including tutorials, javadoc, and FAQs located in the documentation
section of Barracuda.enhydra.org. In fact, it became a little intimidating as I realized that I
could never do justice to Barracuda in attempting to present it comprehensively. Therefore, I
hope this chapter serves to pique the reader's interest and at least convey the essence of what
Barracuda is about and how it picks up where XMLC leaves off.

XMLC: Where the Value Is

XMLC makes no excuses for its low-level approach to supporting presentation development. It is
a simple, elegant approach to ensure complete separation of logic and content. With a low-level
approach, there is great flexibility. You have many options for a basic presentation architecture. If
your application requires support for multiple XML languages representing many display devices,
then XMLC is a solid option.

XMLC does not provide a lot of task-insulating abstraction, except that provided by the accessor
methods, the implemented DOM sub-interfaces (for example, HTML and WML), and some of the
methods in the XMLCUtil class.

http://barracuda.enhydra.org/
http://barracuda.enhydra.org/

 298

As a by-product of its simplicity, XMLC requires that you roll up your sleeves and think out a
number of issues, depending on the complexity and project goals of your Web application.
Another way of looking at this is that XMLC, by virtue of its relatively policy-thin approach to
presentation development, makes an excellent platform upon which to build real presentation
frameworks that solve specific problems.

Its simplicity also makes it an excellent platform for the collection of best practices often
discussed in the XMLC development community. Web site creation can be achieved in a
multitude of ways. Best practices reflect the approaches that seem to pay off in the long run,
reflecting, for example, minimal cost of long-term maintenance. Some best practices make sense
at one stage of evolution, but lose favor over time as technology changes or the dimensions of the
challenge change. JSP made more sense when Web site building projects were constructed
primarily by programmers who knew enough HTML and graphics creation to get the job done.
Today's Web building standard requires a cleaner separation of roles, supporting the best talent
possible. Some believe that JSP is not necessarily the best practice in this modern model.

XMLC is an enabling platform. By virtue of its elegant approach to bridging logic and content, it
sets the stage for presentation frameworks to be built upon it. And it establishes a fundamental
philosophy of disallowing the intermixing of Java and markup. Any future presentation
framework that builds on XMLC—whether it's an open standard or an in-house developed
enterprise standard—by definition will support the same demarcation between Java and markup.

So, other than expose the low-level DOM APIs every now and then, where does XMLC punt and
leave the rest to the presentation architect?

• XMLC defines no server-side event mechanism.
• A localization strategy is up to you.
• There is no standard mechanism for handling forms and server-side validation of forms.

There are tens of thousands of Visual Basic developers out there, just getting their arms around
Java. Is it really necessary to become a DOM expert to take advantage of XMLC development?

A Presentation Framework for XMLC

Presentation frameworks are higher-level technologies that sit on top of presentation technologies
such as JSP. They present a layer of abstraction that simplifies the many tasks that involve the
management and generation of the presentation lifecycle. In the Web application world, this
lifecycle is the request-response activity of displaying and responding to the activity of a page
display.

Barracuda is a comprehensive presentation framework that offloads and standardizes the chore of
developing Web presentations. It is a collection of features that will be recognized by anyone who
has performed presentation development as extremely useful when it comes to solving typical
presentation building tasks. Barracuda is the best candidate going to make XMLC a possibility for
all those Visual Basic developers making the transition to Java and Web development.

The Barracuda framework is cleverly structured to integrate the multiple capabilities of event
handling, form validation, and so on. At the same time, Barracuda is a framework of loosely
coupled capabilities, none of which require the other or the overall framework. For those who
want the complete set of framework features, Barracuda provides a unified environment. For those
who are simply looking for assistance in only a subset of what Barracuda provides, they can
simply choose to use, for example, the localization portion of the Barracuda framework.

 299

The basic personality of Barracuda is based on a strongly-typed component view of presentation
elements. More specifically, it takes a component view of the data that is stored in a DOM
template, lifting the definitions of those components from well-known GUI building technologies
such as Swing or Motif. Barracuda then wraps this component view with vital services represented
as a set of classes that do everything from automatically detecting the device type of the client, to
validating input data and then generating a response that is localized to the client's native language
with the flip of a switch.

In selecting a component model for implementing presentations, Barracuda not only abstracts
away much of the cumbersome and intimidating nature of DOM programming, but it also benefits
the developer by relying on concepts that are well-known in the presentation industry.

Barracuda and MVC

All discussions about presentation frameworks must at some point describe their particular
implementation of the Model-View-Controller design pattern, introduced earlier in Chapter 3,
"Presentation Technologies." Quickly reviewing its division of presentation-building labor, the
MVC architecture describes:

• A Model that represents application data or state,
• The View that processes, formats and renders the display of the Model, and
• The Controller that is responsible for taking user/client input and updating the Model.

A number of presentation frameworks build on top of presentation technologies according to
MVC2, or Model 2. This includes Apache's Struts, built on top of JSP. Model 2 is a variant of
MVC that describes how an HTTP request is processed by a Controller. The Controller updates
the server state representing the Model, then forwards control to something else that extracts data
from the Model and generates an HTTP response as a View in the form of updated markup.
Describing MVC this way is so generic that you can apply just about any presentation technology
and say that it follows the MVC model.

Flow Versus Components

If you've spent some time applying the MVC model to different presentation technologies and
frameworks, you've probably realized that you can interpret just about any presentation
technology as following the MVC architecture. In fact, you may have observed in Chapter 3,
"Presentation Technologies," that I chose not to try to cast XMLC in the MVC model.
Shoehorning any technology into a model adds little value to the reader.

The Model 2 interpretation of MVC focuses on application flow, and the roles and interaction of
MVC components. As a result, it's relatively easy to describe a flow that incorporates processing
and decision making (Controller), data (Model), and presentation (View).

Barracuda builds on a different interpretation of MVC, following the Java Foundation Classes, or
Swing, more closely. Barracuda and Swing both address the components that represent well-
defined Model and View interfaces. Swing and Barracuda do differ in the "accent" they place on
MVC components, as you might expect from the client-thin browser environment as compared
with a client-side Java, thick-client environment.

Applying a GUI Abstraction

To those of us from the world of Motif, Windows, and other GUI libraries, Web presentations
come as a bit of a shock. As we discussed earlier, user interfaces dominated by 3270-style
terminal forms are not the sexiest things in the world.

 300

Barracuda is the mapping of many of the approaches to GUI building popularized by Motif and
the Java Foundation Class' Swing. These and other GUI libraries take advantage of a component
view of GUI elements. In true object-oriented fashion, a component, such as a button, is
responsible for painting or rendering itself. Its behavior or appearance is modified by the
adjustment of a published attribute, and it uses callbacks to activate areas of logic that were
registered during development. A callback can be linked with the push of a button, or the release
of that same button.

A Component View of the DOM Template

Let's address how these visual components map to the Barracuda and DOM world. Simply put,
Barracuda puts a component face on top of the DOM. Individual components map, or bind, to
different areas of the DOM. And the developer interacts with the DOM only by going through the
components.

Rendering a page in an HTTP world takes on an expanded meaning. When a Barracuda
component is instructed to render itself in a View, it extracts data from the Model and places it
into the portion of the DOM tree for which it is responsible. The component is smart about the
care and feeding of the entity and data that it represents, such as an ordered list, or a table. For
example, if it's a list component, it will clear out any dummy data that remains in the DOM
template.

As we'll discuss later, Barracuda introduces the notion of directives. These are keys, represented
as class attribute values, embedded in nodes of the DOM template that are put there to influence
the component's behavior in fetching data from the Model.

Layout by DOM

A view is what a component renders itself in, such as an HTML document. render() is
analogous to the paint() method in standard GUI programming. A component knows
everything there is to know about how it represents the data as a list, option menu, and so on.

Components give us a view of the DOM, but it's the DOM template that actually represents the
layout of the document that will eventually be returned to the client.

The component is responsible for taking data from the model and inserting into the DOM. This
process makes it a lot easier to deal with complex DOM structures and the operations that
populate them with live data.

A Collection of Capabilities

Barracuda is more than a component view of creating Web presentations. One of its more
intriguing aspects is the modular nature of the packaging of the complete Barracuda solution.

Barracuda was designed to fulfill a set of commonly needed runtime capabilities that reduce the
need for low-level architecture definition and development. Figure 13.1 generalizes the places
where Barracuda offers support during the round trip of an HTTP request and subsequent response.

Figure 13.1. Functional roles of Barracuda development at runtime.

 301

Generally speaking, Barracuda handles both sides of the HTTP equation where common tasks are
to be found, including figuring out the client type, generating events in response to decomposing
the request, and validating the data that arrives from the client. Assisting the developer with
gathering data from the model representing application state or data from a database, Barracuda
leverages XMLC-generated DOM templates that are shrouded by a set of visual (and non-visual)
components, such as buttons and lists.

The value is that Barracuda defines a framework and a set of classes for accomplishing the
following common issues:

• Client capability—Automatically detects the distinguishing characteristics of the request-
originating client. Client traits include browser type, device type, and the preferred
language.

• Event model—Maps client-side events to event objects on the server, which in turn
update any interested listeners that have been registered.

• Form mapping and validation—Automatically maps form elements into Java objects that
are delivered to a validation mechanism.

• Localization—Automatically generates DOM templates for supported locales, a process
that is made transparent to the developer. Loading of the desired locale DOM is automatic.

• Component model—All updates to the manipulated DOM are done through a component
view.

• XMLC—Barracuda is built on top of XMLC. XMLC's natural features and development
philosophy of separating cleaning markup from markup-building logic are inherited by
Barracuda.

There are features of Barracuda that go beyond the traditional component models. For example,
Barracuda components differ from Swing components in that they are modeled after data, rather
than the UI functionality associated with data. This means that you need only one Barracuda
textarea component representing multiple areas of text in a DOM template. This is similar to
the approach we took in the VendQuest questionnaire template.

The Tackle Box Analogy

Christian refers to Barracuda's "tackle box" approach to supporting a presentation
framework. Rather than representing an all-or-nothing toolset, Barracuda's features are
built with little to no interdependencies. This makes it easy for a developer to choose,

 302

for instance, to only use the localization portion of the framework for their needs. The
tackle box analogy symbolizes the developer's ability to pick those services (or
hooks/lures) that she needs.

Because most of the knowledge of the layout of the markup presentation is contained in the
DOM's structure (as a template), Barracuda components are very lightweight, because they don't
have to worry about placement issues.

Other differences include

• Pluggable renderers—Used by the developer to tell components how to render themselves
in new user interface types, such as an i-mode phone or a kitchen device supported by a
new XML language.

• BTemplate— A new style of component that gives the developer the ability to bind a
template engine to a particular area of a DOM tree.

• Component framework—A linkage of components and the Barracuda event model that
insulates the developer from having to deal with the facts of event client-side events that
are linked with server-side listeners.

Barracuda Candy

Christian coined the term Barracuda candy to highlight the kind of features in Barracuda that earn
a "wow" response from those evaluating Barracuda for the first time.

One of these features is the ability to detect whether JavaScript is actually enabled in the client
without relying on cookies or session information. Another is the ability to disable the back button.
Using a dynamic HTML in-page submit, this prevents a user from going backwards from a form
when you don't want them to. Yet another is the scripting framework. There are not yet a lot of
pre-canned scripts, but all the wiring is in place to be able to easily add scripts to the client markup
programmatically.

Component Model

In traditional component models, the information required to structure and present the data to the
user is kept in a single component hierarchy. The component hierarchy is represented by geometry
widgets that organize the placement of the components that they contain. The contained
components, such as a list widget, contain the items they will display to the user.

In a server-side component model like Barracuda, things are a little different. First, it's the DOM
template that represents the structure and general layout of the presentation. That shouldn't be a
great surprise if you've already read the first 12 chapters of this book. The roles of the components
in the Barracuda model are to

1. Represent, through binding, the sub-templates within the DOM
2. Be responsible for the collection of data from the Model to be stored in the bound areas of

the DOM

The relationship of the DOM's role and the component's role requires what Barracuda refers to as
a two phase rendering process. There is no X-Windows or Windows Library on the client. There
is only self-describing markup, and that markup's structure is organized by the DOM. And it's up
to the components to present an easy-to-use abstraction of how data is managed within sections of
that DOM.

Basic Barracuda Components

 303

A presentation consists of a hierarchy of components. Each component is bound to portions of the
DOM template. The components take care of rendering their associated data into the DOM
template. Figure 13.2 represents the complete set of Barracuda components, how they're
subclassed from BComponent, and how some of them relate to one another.

Figure 13.2. The complete set of Barracuda components, how they're subclassed
from BComponent, and how some of them relate to one another.

BComponent defines a standard signature that is inherited by each child component. Most
noteworthy, each component inherits its render() method from BComponent. The capability
for components to be represented as a hierarchy is inherited from the BContainer interface.

Components have the following characteristics:

• They may be visual or non-visual.
• They do not adhere to a strict lifecycle. Developers may create and destroy them, or cache

them away on a per-session basis.
• Some components offer event model integration. By adding an event handler, the server is

automatically notified when a client event occurs.

Binding Components to a DOM

We've talked about binding, but what does it actually mean? Figure 13.3 illustrates the relationship
of some HTML markup to the resulting tree of Barracuda components.

Figure 13.3. How an HTML template maps to hierarchical Barracuda components.

 304

The upper left portion of Figure 13.3 represents a typical HTML page containing a paragraph
followed by an ordered list. The following sequence of events take us from the loading of a DOM
template to its delivery to the client:

1. The DOM template is loaded by the application.
2. The component hierarchy is created. Each component, with the exception of the parent

component, is bound to a specific area (that is, node) of the DOM.
3. The parent component is asked to render itself. The parent, with no view of its own,

cascades the render request to its child components.
4. The first component with a view, a Text component of type BText, simply updates the

first text child it contains, that is, the content of the paragraph, with text information from
the Model.

5. The next component, BList, bound to the ordered list, responds to the render request by
first removing all the elements it contains (that is, li). It then queries the Model for a
fresh set of data representing the gold class sponsor vendors, with which it then updates
the sub-template to which it is bound.

6. The final rendering is to turn the DOM template into a client view, sent back to the client
as HTML.

Table 13.1 introduces the collection of components as supported by Barracuda. Keep in mind that
Barracuda can easily be extended to support custom components as well.

Table 13.1. Barracuda Component Descriptions
Component Role
BInput Manipulates HTML input element within the DOM.
BToggleButton Manipulates HTML radio/check box input elements within the DOM.
BAction Binds server-side event handlers to DOM elements. These elements

generate events when rendered on the client (for example, buttons,
links, and input elements).

BLink Extends BAction in order to set text in the DOM, such as the name of
a link.

BText Binds text string into a DOM node.
BTable Generates a table structure within the DOM.
BList Generates a list structure in the DOM.
BSelect Manipulates a select element in the DOM.
BTemplate Treats the DOM as a template engine. Queries the model based on key

values found in the template.

 305

Example: VendorSpotlight

We're going to use Barracuda to implement a presentation that generates a simple Vendor
Spotlight page that features a particular vendor and some information about them.

In this example, we'll focus on the use of

• The View
• The Model
• Barracuda directives

There's not a lot of presentation wizardry involved, other than importing a portion of one HTML
template, as a header navigational bar, into the main template. The data will come from accessing
a Model representing the data source (of hard-coded strings). After we discuss how to get the
application up and running, we'll review the details regarding how Barracuda does its stuff.

Configuration

You take the following steps to use Enhydra AppWizard to establish a standard servlet Web
application to build from. After typing appwizard, select Web Application as the application
type, and have the source tree implement the familiar Welcome stub application. Then take the
following steps:

1. Rename WelcomeServlet.java to VendorSpotlightServlet.java in
/presentation.

2. Rename Welcome.html to VendorSpotlight.html in /resources.
3. Change all references of Welcome to VendorSpotlight in the make file in

/presentation.

So far, all you've done is deal with filenames and references to them from the make files. Now
you need to introduce the Barracuda 1.0 environment into the equation. The two jar files you'll
need are seen here:

• barracuda-core.jar
• log4j.jar

These two jar files contain all the components you need to take advantage of the Barracuda
features discussed in this chapter.

HTML and Directives

The target HTML template is displayed in Listing 13.1. Prepare to take yourself out of the XMLC
mindset, and take a look at a new use for id and class attributes.

First of all, the familiar looking use of an id attribute, id="VendorSpotlight", indicates the
top of the HTML document. This will be used by Barracuda to eventually bind the document to its
DOM template representation.

Listing 13.1 VendorSpotlight.html

<html id="VendorSpotlight">

 306

<head><title class="Dir::Get_Data.VendorSpotlight.Title">Mock
Title</title> </head>
<body style="font-family: Georgia, Arial, Times New Roman"
bgcolor="#FFFFFF">

<h2 class="Dir::Get_Data.VendorSpotlight.Vendor">Mock Vendor
Name</h2>

<li class="Dir::Get_Data.VendorSpotlight.Descr">Mock Short
Description
<li class="Dir::Get_Data.VendorSpotlight.Country">Mock
Country
</body>
</html>

In the areas where dynamic content is identified, you use a class attribute to indicate a
Barracuda directive that will be used by the application to find the Model that will populate it with
content. The process is very similar to the use of XMLC's id attributes, only instead of generating
convenient accessor methods, you're going to work with a keyword table. More in the next section.

The Presentation Logic (Using BTemplate)

It takes awhile to figure out how VendorSpotlightServlet is different than the typical
doGet() servlet. Listing 13.1 is the complete presentation logic that implements
VendorSpotlight. Rather than use element-specific components, such as BList or BTable,
we will use the generic BTemplate component.

As with all the other "B" components, BTemplate is derived from the BComponent class. It
therefore inherits the render() method, which will stimulate it to gather data from the Model.
As a kind of generic component, BTemplate appears to be very handy when generating pages
such as reports. Rather than having specific knowledge about how to do the housekeeping of a
particular element, such as a table, as BTable does, BTemplate focuses on the use of directives
that are used to tell the component where to fetch data from the model. The generic nature of this
component makes it a natural for introducing Barracuda programming.

Listing 13.2 fully implements the VendorSpotlight application. Its resulting presentation is
shown in Figure 13.4.

Figure 13.4. Presentation of the VendorSpotlight application.

 307

Listing 13.2 VendorSpotlightServlet.java

package example.presentation;

import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

import org.w3c.dom.*;
import org.enhydra.xml.xmlc.*;

import org.enhydra.barracuda.core.comp.*;
import org.enhydra.barracuda.core.comp.helper.*;

public class VendorSpotlightServlet extends ComponentGateway {

 // xmlc factory (ok as static because its threadsafe)
 private static XMLCFactory xmlcFactory = null;

 // Handle the default HttpRequest.
 public Document handleDefault (BComponent root,
 ViewContext vc, HttpServletRequest req,
 HttpServletResponse resp) {

 // Load the DOM template object.
 if (xmlcFactory==null) {
 xmlcFactory = new XMLCStdFactory(this.getClass().getClassLoader(),
 new StreamXMLCLogger());
 }
 XMLObject page = xmlcFactory.create(VendorSpotlightHTML.class);

 //Find the topmost node in the parent document.
 Node node = page.getDocument().getElementById("VendorSpotlight");

 // Create a view on that node.
 TemplateView tv = new DefaultTemplateView(node);

 // Create the component and bind it to the view and the model
 BTemplate templateComp = new BTemplate(tv);

 308

 templateComp.addModel(new VendorSpotNavBarModel());
 templateComp.addModel(new VendorSpotlightModel());

 //add the component to the root
 root.addChild(templateComp);

 //return the page
 return page;
 }

 // VendorSpotlightModel
 //Here is where we fetch data from the Model, using the
 //directives to indicate which data goes where.
 class VendorSpotlightModel extends AbstractTemplateModel {

 public String getName() {
 return "VendorSpotlight";
 }

 // Provide items by key.
 // We're obviously hardcoding the results we could fetch
 // from an EJB, data (JDBC) object.
 public Object getItem(String key) {
 ViewContext vc = getViewContext();
 if (key.equals("Vendor")) return "ACME Corporation";
 else if (key.equals("Title")) return "Vendor Spotlight";
 else if (key.equals("Descr")) return "Just two guys in a garage.";
 else if (key.equals("Country")) return "United States";
 else if (key.equals("NavBar")) {
 // Grab the other HTML DOM template.
 XMLObject navbar = xmlcFactory.create(NavBarHTML.class);
 // Get to the element containing the table.
 Node navbarNode = navbar.getElementById("NavBar");
 Document doc = vc.getElementFactory().getDocument();
 return doc.importNode(navbarNode, true);
 } else return "Error";
 }
 }

 class VendorSpotNavBarModel extends AbstractTemplateModel {

 public String getName() {
 return "VendorSpotNavBar";
 }

 public Object getItem(String key) {
 ViewContext vc = getViewContext();
 if (key.equals("PrevVendorLink")) return "previous vendor";
 else if (key.equals("NextVendorLink")) return "next vendor";
 else return "Error";
 }
 }
}

Walking through Listing 13.2, the first noteworthy item is that VendorSpotlightServlet is
defined as a subclass of Barracuda's ComponentGateway. Barracuda declares
ComponentGateway as follows:

public abstract class ComponentGateway

 309

 extends javax.servlet.http.HttpServlet

As an extension of HttpServlet, ComponentGateway is the handshake between Barracuda
and the servlet environment. HandleDefault() is the entry point into the servlet.
ComponentGateway overrides the standard doGet(), mapping the GET request to
HandleDefault().

With the DOM template, VendorSpotlightHTML.class, generated earlier from the HTML
source in Listing 13.1 by XMLC, the application locates the top of the template from which all
binding (of components to the DOM) will occur.

The DOM is decomposed by DefaultTemplateView() into Barracuda classes in preparation
for accessing the directives, extracted from the DOM tree, and the tree as a whole. Directives are
parsed and stored in a Barracuda package StateMap class as representing key-value pairs.

Accessing the Model Using Directives

Now that the template View has been prepped, you're now ready to access the Model. This is
where we see the role the component takes to control (and therefore simplify) how data is
extracted from the model and inserted into the DOM.

Note that we're actually working with two Models. The first is the Model that addresses the
VendorSpotlight.html page. This will be the focus of our discussion for now. We'll get to
the other Model, represented by the SpotlightNavBar.html, later in this chapter.

The Model is always represented within a component in the form of an inner class. In the case of a
BTemplate component, the inner class is a subclass of AbstractTemplateModel.
VendorSpotlightModel() is our example's inner class, representing the close binding of the
model to the overall component.

Later on, we'll review the topic of Barracuda directives in greater detail. For now, let's touch on
the topic of directives in order to briefly review the role of VendorSpotlightModel(). The
Model is referenced from previously extracted keys that were introduced as class attributes in the
HTML.

In getItem(), for each match encountered, data is returned from the Model of hard-coded
strings. Looking at the HTML in Listing 13.1, you can see how directives are being used to
populate specific elements with data from the model. For instance, the HTML fragment

<title class="Dir::Get_Data.VendorSpotlight.Title">Mock Title</title>

is telling VendorSpotlightModel() the name of the data, Title to replace its content, Mock
Title. Not exactly an embedded programming language, but we'll get to that later.

Rendering the Model

At first glance, the logic of getItem() looks a little confusing. You might expect that it would
be in a looping statement in order to establish a match with each directive. This can be explained
by the tight relationship created by Barracuda of the act of rendering to accessing the model.

If you were to put a call to System.out.println() in front of each significant method call in
VendorSpotlightServlet, then another call inside of getItem(), you might see the
following:

 310

vendorspotlight: inside vendorspotlight
vendorspotlight: picked up the dom template
vendorspotlight: creating a view with defaultTemplateView()
vendorspotlight: creating a model with VendorSpotlightModel()
vendorspotlight: creating a binding with BTemplate()
vendorspotlightmodel: key: Title
vendorspotlightmodel: key: Vendor
vendorspotlightmodel: key: Descr
vendorspotlightmodel: key: Country
vendorspotlightmodel: key: Vendor

We stated earlier that any component child of BComponent will be instructed to render itself
when BComponent is rendered. Components inherit the render() method from the interface
BContainer. The effect on our BTemplate component, representing the entire view of the
document, is the invocation of getItem() five times, reflecting each of the directive-specified
data bindings.

The notion of the role of render() reflects how Barracuda differs from its own modeling of the
Swing component strategy. Although Swing rendering deals more with the actual creation and
placement of UI components, Barracuda focuses more on the model extraction and its insertion
into visual elements. Again, issues of placement are already addressed by virtue of the role of the
DOM template.

More Than Strings

Extracting data from the model can be more than about returning strings. In fact, the Model can
return any of the following three objects:

• Nodes
• BComponents
• Strings

In the case of the NavBar directive in Listing 13.2, our intent in VendorSpotlightModel() is
to import a portion of another document, shown in Listing 13.3, that will serve as the navigational
bar embedded in the top row of the table.

Listing 13.3 NavBar.html

<html id="VendorSpotlight">
<link rel="stylesheet" href="media/sfa.css" type="text/css">

<body bgcolor="#FFFFFF" text="#000000">
<table id="NavBar" width="100" border="0" cellspacing="0"
cellpadding="10">
 <tr>
 <td class="navDirs" align="left"> <a href="prevVendor.html"
class="Dir::
Get_Data.VendorSpotNavBar.PrevVendorLink">Previous </td>
 <td class="sfaTitle" align="center">
SFA
 </td>
 <td class="navDirs" align="right"> <a href="nextVendor.html"
class="Dir::
Get_Data.VendorSpotNavBar.NextVendorLink">Next</td>
 </tr>
</table>
</body>

 311

</html>

Having loaded the DOM template for this second document, importNode() is called to insert
the extracted template into its new home:

XMLObject navbar = xmlcFactory.create(NavBarHTML.class);
Node navbarNode = navbar.getElementById("NavBar");
Document doc = vc.getElementFactory().getDocument();
return doc.importNode(navbarNode, true);

What we now have is a composite view consisting of the processed (or ready for processing) main
template with inserted navigation bar, and a navigation bar that has been incorporated into the
parent view, but whose directives have yet to be processed. It's now time to talk about our other
Model processing method in Listing 13.2, VendorSpotNavBarModel()

The getItem() call in VendorSpotNavBarModel() can now be invoked to get the directive
keys PrevVendorLink and NextVendorLink that will update the Prev and Next hyperlinks.
The following HTML fragment extracted from Listing 13.3 shows how the directive-naming
convention uniquely identifies the NavBar markup using VendorSpotNavBar in the directive
name:

<a href="prevVendor.html"
class="Dir::Get_Data.VendorSpotNavBar.PrevVendorLink">Previous</
a>

For now, we're replacing the links with meaningless strings. You can take this example and extend
it with real hyperlinks as well.

Summarizing

Summarizing what you just witnessed in our example is the construction of a composite view
using the BTemplate component:

• A View is classified as something that has a one-to-one relationship with a DOM node. A
view is bound to that node.

• Our example takes a special kind of view called a TemplateView, because we are
accessing the DOM through the BTemplate class.

• Inner classes extending AbstractTemplateModel are defined to enable the
component to bind View(s) to a Model.

• Directives can be used to extract strings or other markup from the model.

Directives

A typical challenge regarding how presentation strategies avoid creating yet another embedded
language is "How do you minimize the Java code's pre-knowledge about the markup template that
it's manipulating?" This is particularly important if your presentation code is setting out to support
a range of devices.

One solution is to embed logic in the markup itself, playing a role in the generation of content
dynamically. But then we're back to square one, putting a layer of JSP-isms on top of XMLC.

 312

Barracuda directives are an attempt at being realistic and seeking a middle ground. Yes, as we've
just seen, Barracuda directives influence the behavior of the code, but they do not represent code
themselves. Instead, they're smart classes that are used to

• Identify markup with informative, structured keys for extracting values from the Model.
• Indicate markup that is to be replicated.

We have yet to address this second role of directives. Before we do so, let's more formally review
directives. Directives take the form

Dir::<Directive Command`>.<Model>.<Keyword>

For example:

<option class="Dir::Get_Data:VendorSpotlight.Vendor">ACME</option>

This naming convention does a pretty good job of preventing name space collision within the
same application. The use of the getName() method, as required by the
AbstractTemplateModel class, is used by Barracuda to find the directives that match the
Model representation. In the NavBar case, it was VendorSpotNavBar.

The directives supported by Barracuda, as defined in the TemplateDirective class, are

• Get_Data::.<model>.<key>
• Set_Attr::.<model>.<key>.<attr>

Get_Data is for specifying a model based on a key and placing it into the content of the
document. Set_Attr is used when it's an attribute that is to be updated from the Model, such as
an alt attribute.

The directives for iteration are

• Iterate_Start.<model>
• Iterate_Next.<model>
• Iterate_End.<model>

Iterate_Next asks the model for the next record if it exists.

And then there is

• Discard

for discarding the element altogether.

The Barracuda folks maintain that this is as far as directives will ever go, avoiding the path taken
by embedded languages. Read their lips: No conditional tests—although the door is left wide open
for those interested in creating custom directives:

(Dir::<command>.<model>.<key>.<attr>).

Building Directive Iterations

 313

Iteratives are used to fetch batches of data to build up a portion of the DOM template, such as a
list or a table or rows. How you implement the Model's support for iteratives is up to the details of
your Model, but Barracuda provides the interface definition that you must implement.
IterativeModel is described here:

public interface IterativeModel {
 public void preIterate();
 public void postIterate();
 public boolean hasNext();
 public void loadNext();
}

This interface defines four key methods that enable the component to iterate through the model's
data:

• preIterate()— The model uses this method to prepare the scene for iteration. It is
called when the component begins to process a data series. Typically used to set a counter
variable.

• hasNext()— The component tests the Model to see whether new data remains. This
typically tests a counter.

• loadNext()— The component calls this method to grab the next data item. It could be
a counter increment for extracting data from an array of data.

• postIterate()— This method is called when the iteration is complete and needs to
perform cleanup.

Suppose we have a Model called VendorListModel, representing a list of vendors. By
implementing these methods, the BTemplate component can iterate through the data in the
VendorListModel. Every time it requests a specific key, the model just returns the value from
the current row of data. In our example, only one key is used, VendorName:

<ol id="VendorList">
<li class="Dir::Iterate_Start.VendorList
Dir::Iterate_Next.VendorList"><span class="Dir::
Get_Data.VendorList.VendorName">ACME
<li class="Dir::Iterate_End.VendorList Dir::Discard">IBM
<li class="Dir::Discard">Apple

As you can see, Discard directives can be used to mimic one of the key attributes of XMLC,
which is to remove mocked-up content. And, like XMLC, the use of attributes removes the need
to rely on introducing new element tags.

That wraps up our discussion of how you can use the BTemplate component to take advantage
of one of Barracuda's more interesting features, directives.

Localization

Localization is getting hot. The world is shrinking, thanks in large part to the pervasive nature of
the Internet. Once delegated to the second- or third-tier application requirements, along with
security features, localization is now a first-tier consideration because of the direct influence of the
international worldwide open source community.

 314

Those who created the first two or three versions of their product are now ready to move to other
countries with their next generation product. Barracuda greatly simplifies the task of localization
by defining both an application configuration architecture and reasonably high-level API
abstractions.

Some Localization Strategies

As we briefly discussed in Chapter 9, "Presentation Strategies," there are some straightforward
options for achieving localized versions of each Web page. One is to put id attributes in every
place where text occurs and replace them with their localized interpretations at runtime. This is a
costly strategy in both developer effort and simple runtime processing.

Another option is to localize the textual portions of the template, and then, based on the locale of
the target, load the appropriate template. Although this has a number of advantages, including
minimizing the impact on the locale-aware Java logic that must be generated, it shifts the burden
to maintain legions of markup pages. If you need to rework the basic template, you must rework
them all. This is fine, if you like to hire lots of part-time high school students.

From pragmatic experience, particularly for those companies focusing on, for example, the
European market, none of these options are very satisfactory.

To address the issue of localization in an architecturally satisfying way, Barracuda leverages the
best of

• Ant
• Java resource bundles
• The XMLC template compilation

Java Resource Bundles

Part of the answer that Barracuda has designed lies in the native J2SE support for the mechanism
of resource bundles. Resource bundles simplify the task of keeping locale-specific information
and content separate from Java logic.

The naming convention of the properties file used by Barracuda for localized strings mimics the
file naming convention used by standard Java resource bundling

baseclass + "_" + language + "_" + country + "_" + variant +
".properties"

where the baseclass is the "family name" and language is the locale. Each record in the
properties file is considered a class:

VendorSpotlight_Canadian_French_Canadian.properties

XMLC Localization taskdef

Another component to how Barracuda addresses localization takes advantage of the Ant taskdef
feature. Ant taskdefs are custom chores assigned to the Ant build process. Barracuda uses an
XMLC taskdef to generate DOM templates using XMLC. For localization, Barracuda's XMLC
taskdef is extended to set the stage for easing the chore of localization.

 315

At this point, let's use VendorSpotNavBar.html to step through the details of how you move
an application through the localization process. For the purpose of this illustration, we'll confine
the localization to the navigation bar links, Previous and Next:

1. Create VendorSpotNavBar.html.
2. Create VendorSpotNavBar.properties, a standard Java properties file. This file

isolates all the static text in VendorSpotNavBar.html. In our case, it's pretty darn
simple because the only static strings are "Previous" and "Next". Both keys must be
unique:

VendorSpotNavBar.Prev = "Previous"
VendorSpotNavBar.Next = "Next"

3. Now for the localization step. Create properties files for each localization. The French
flavor would reside in VendorSpotNavBar_fr.properties:

VendorSpotNavBar.Prev = "Précédent"
VendorSpotNavBar.Next = "Suvant"

The id attributes are identical to the original properties file. The file is named according
to the standard resource bundle naming conventions of:
[language][country]_[variant]. This convention applies to Java locales, so a
properties file created for the dialect of French used in Canada would appear as:
VendorSpotNavBar_fr_ca.properties

4. Finally, the Ant taskdef xmlc_localization detects the presence of the properties file.
It then invokes the xmlc command to generate a DOM that is unique to the contents of
the properties files. In this case, we now have a DOM with French content.

The result of our example is that we now have

• A new HTML file: VendorSpotNavBar_fr.html
• A new Java file: VendorSpotNavBarHTML_fr.java
• A new template file: VendorSpotNavBarHTML_fr.class

Matching Strings

One of the curious ways that Barracuda addresses the issue of associating each localized string
with its proper place in the HTML markup is to rely on a perfect match of the string in the master
properties file, VendorSpotNavBar.properties, with the target HTML file.

When a match is found, the properties object, such as VendorSpotNavBar.Prev, is assigned as
an id attribute to the target HTML file. The taskdef then uses these ids to grab the values in the
localized properties files in order to plug in the proper string value.

Loading Templates by Locale Using ViewContext

How does our logic now take advantage of all these localized DOM template classes? Barracuda
takes care of that by providing the class DefaultDOMLoader.java. This class provides a
mechanism to load a DOM object based on class name and locale in much the same manner that a
Java resource bundle works.

The steps our code must take are as follows:

 316

1. Determine the locale.

This is accomplished with a method call to getClientLocale(), one of the many
methods of the ViewCapabilities class for detecting the traits of the client.
ViewCapabilities extracts the information it needs from HTTPRequest:

ViewContext vc = getViewContext();
Locale locale = vc.getViewCapabilities().getClientLocale();

ViewCapabilities identifies the language, country, and variant codes passed through
the HttpRequest object. If these values are missing, it will see whether the locale
information has been cached in the session. If all else fails, it will default to the locale of
the application's hosting server environment.

Other methods of ViewCapabilities are listed in Table 13.2.

2. Now that we've got our target locale, we need to get our DOM object. We can usually do
this with one line of code:

XMLObject page = (XMLObject)
DefaultDOMLoader.getGlobalInstance().getDOM(VendorSpotNavBarHTM
L.class, locale);

Using the locale value, DefaultDOMLoader will seek out a DOM template class
with, for example, _fr appended to VendorSpotNavBarHTML, as in
VendorSpotNavBarHTML_fr.class.

3. At this point, we're all set to use our BTemplate representing the DOM template.
Clearly, other data requires localization, such as "two guys in a garage." One option is to
populate the same properties files with these values, fetching them using the resource
bundle getBundle() call to populate the Model.

In keeping with the Barracuda philosophy, this entire localization mechanism can be used
independently of the other Barracuda features by XMLC developers.

Table 13.2. Other ViewCapabilities Methods
Method Returned data
getClientType() HTML_3x, HTML_4x, WML_1_2
getFormatType() HTML, WML, XMLC
getScriptingType() JavaScript, VBScript, WMLScript

Summary

We have covered but a small portion of Barracuda's overall set of capabilities to simplify the task
of presentation development on top of XMLC.

Barracuda is a very interesting approach to a presentation framework, because it attempts to
import the concepts of traditional client/server development to the Web application development
space. In the process of doing this, it greatly simplifies what can be rather tedious tasks when
implemented under XMLC. In the process of simplifying many tasks, Barracuda introduces a

 317

standard approach that greatly reduces the overall time required for presentation design and
development.

Just as noteworthy is the architectural effort behind Barracuda to implement all its functional
capabilities as tools that can be chosen from a menu. This eliminates the heavy-handed criticism
from which other frameworks suffer. The bottom line is that Barracuda offers great value without
throwing away the original value proposition of XMLC.

 318

Appendix A. XMLC Command Line Options
IN THIS APPENDIX

• xmlc Command Options

This appendix lists all of the supported command line options for the xmlc command. For
detailed examples of selected command options, refer to Chapter 7, "The xmlc Command."

From the command line, the xmlc command supports the following syntax:

xmlc [options] [options.xmlc ...] markup_file

xmlc Command Options

• -class <class>— Sets the fully qualified class name for the generated class or
interface.

 319

• -classpath <path>— javac pass-through option.

 320

• -d <dir>— Specifies the destination directory for the class file. This option is passed
on to javac.

 321

• -delete-class <classname>— Deletes all HTML or XML elements that have a
CLASS attribute with value <classname>. This is useful for removing mockup data.
Note: This class name has nothing to do with a Java class. You can include multiple
instances of this option.

 322

• -docout <outfile>— Writes a static document to <outfile> instead of generating
and compiling Java code. You can use this option for pages that have URLs that need
mapping, but no dynamic content. It is also an excellent debugging option.

 323

• -dom <DOMname>— Specifies the type of DOM to generate. The default behavior is the
LazyDOM. Valid values are xerces and lazydom.

 324

• -domfactory <classname>— Specifies the Java class for creating DTD-specific
documents. This option is not supported for HTML input documents. The DOM factory
must have a constructor that does not take any arguments. This class must implement the
interface org.enhydra.xml.xmlc.dom.XMLCDomFactory and be on the
CLASSPATH.

 325

• -dump— Displays the contents of the DOM tree generated from the input markup
document.

 326

• -extends <classname>— Specifies the class that the generated document extends.
This class must extend XMLObjectImpl for XML documents, extend
HTMLObjectImpl for HTML documents, and be available on the CLASSPATH. The
class is normally an abstract class.

 327

• -for-recomp— Generates support for automatic class recompilation. The information
is stored in a file with an .xmlc suffix appended to the class name, as specified with the
-class option. Implies the -generate both option.

The three files generated by -for-recomp are as follows:

o <classname>.class— The interface definition;
o <classname>Impl.class— The implementation of the interface; and
o <classname>.xmlc— The file of generated XMLC metadata for instructing

subsequent recompilations of markup files during application execution.

The contents of <classname>.xmlc appear as follows, where the example input markup page
was named test.html:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xmlc xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file:/org/enhydra/xml/xmlc/metadata/
xmlc-1.0.1.xsd">
<compileOptions keepGeneratedSource="true"/>
<documentClass delegateSupport="true" generate="both"
recompilation="true"/>
<inputDocument url="test.html"/>
<javaCompiler javac="C:/jdk1.3//bin/javac"/>
<parser/>
<html/>
<domEdits/>
</xmlc>

More information about XMLC metadata can be found in Appendix B, "XMLC Metadata."

• -g— javac pass-through option.

 328

• -generate <type>— Specifies what XMLC generates:
o class— XMLC generates a class that does not depend on an interface (default).
o interface— XMLC generates only an interface.
o both— XMLC generates both an interface and an implementation class. The

implementation has the suffix Impl appended to the class name, and uses the
class name specified with the -class option.

o implementation— XMLC generates the class that implements the interface,
but not the interface.

 329

• -html:addattr <attr>— Adds the specified attribute <attr> to the list of valid
HTML attributes. The parser then allows the attribute for all tags. This is used by the
HTML Tidy parser only.

 330

• -html:addtag <tag> <flags>— Adds the specified <tag> to the list of valid
HTML tags. The parser then allows the tag. The tag name is case-insensitive. <flags> is
a comma-separated list that contains the content model and other options that describe the
tag. You can specify the following values:

o inline— Tag applies to character-level elements.
o block— Tag applies to block-like elements such as paragraphs and lists.
o empty— Tag does not have a closing tag.
o opt— Closing tag is optional for this tag. You must specify at least one of the

following flags: inline, block, or empty. This is used by the HTML Tidy
parser only.

 331

• -html:addtagset <tagsetname>— Adds a predefined set of tags to the list of
valid HTML tags. You can specify:

o cyberstudio— Tags added by Adobe Cyberstudio, which are ignored by most
browsers. Used only by the HTML Tidy parser.

 332

• -html:frameset— Deprecated and is ignored.

 333

• -html:old-class-constants— Generates old-style, all uppercase class names.
Available for compatibility with applications generated by older versions of XMLC.

 334

• -implements <interface>— Specifies the interface that the generated class will
implement. You can include multiple instances of this option.

 335

• -info— Prints information about the document object, including ids and URLs.

 336

• -javac <prog>— Specifies the name of the Java compiler to use.

 337

• -javacflag <flag>— Passes the specified flag to the javac program, including any
leading hyphen (-) or plus (+) characters. You can include multiple instances of this
option. Use the -javacopt option for compiler options that require values.

 338

• -javacopt <opt> <value>— Passes the specified option and value to pass to
javac, including any leading hyphen (-) or plus (+) characters.

 339

• -keep— Saves the generated Java source file. An excellent option for studying how
xmlc generates DOM templates and accessor methods.

 340

• -methods— Prints the signature of each generated access method. Lists any methods or
access constants that were not generated because they were not valid Java identifiers.

 341

• -nocompile— Does not compile the generated Java source file.

 342

• -O— javac pass-through option.

 343

• -parseinfo— Prints detailed information about the parsing of the page.

 344

• -parser <parser>— Specifies the parser that XMLC uses:
o tidy— Enables the HTML Tidy parser. This is the default HTML parser and

always performs validation.
o swing— Enables the Swing parser for HTML. This parser always performs

validation.
o xerces— Enables the Xerces parser for XML. This is the default XML parser

and performs XML validation by default.

 345

• -sourceout <sourceout>— Specifies the root directory for source files generated
by XMLC. If you specify the -keep option, the generated source files are stored in this
directory.

 346

• -ssi— Enables processing of server-side includes in the input document. As explained
in Chapter 7, "The xmlc Command," this feature does not support true server-side include
behavior. Instead, it simply enables the compile-time inclusion of markup files referenced
from the target markup file.

 347

• -urlmapping <origURL> <newURL>— Maps all occurrences of <origURL> to
<newURL>. You can include multiple instances of this option.

 348

• -urlregexpmapping <regexp> <replace>— Maps all occurrences of the URL
that matches regular expression <regexp> to the the URL specified by <replace>.
You can include multiple instances of this option. This option uses the gnu.regexp
package and recognizes regular expressions with POSIX extensions.

 349

• -urlsetting <id> <newURL>— Changes the URL for the specified <id> to the
specified <newURL>. You can include multiple instances of this option.

 350

• -validate yes|no— Changes the default document validation mode of the parser. If
you specify an option value that the parser does not support, XMLC generates an error.
The default behavior is yes.

 351

• -verbose— Generates useful output about the compilation process.

 352

• -version— Prints the version number of the xmlc command used. If you do not
specify any other options, XMLC quits after printing the version number. You do not
need to specify a <docfile> with this option. For this book, xmlc -version returns:
Enhydra XMLC version 2.0.1
See http://xmlc.enhydra.org for latest distribution

http://xmlc.enhydra.org/

 353

• -xcatalog <catalog>— Specifies the catalog file to use for resolving external
entities. You can use this option to specify local DTDs.

 354

Appendix B. XMLC Metadata
IN THIS APPENDIX

• <compileOptions/> Elements
• <inputDocument> Elements
• <parser> Elements
• <html> Elements
• DOM Editing Elements
• <documentClass> Elements
• <javaCompiler> Elements

Command options for the xmlc command can be passed to XMLC in the form of an XML
language called Enhydra XMLC metadata. Governed by XML rules and an XML schema, XMLC
metadata gives you greater control and flexibility to affect the behavior of the xmlc command.

Many of the directives and their sub-element options map directly to the effects of command line
options.

<compileOptions/> Elements

<compileOptions/> Specifies options for the document compiler.

Attributes:

printVersion Prints the XMLC version number (Boolean value).
keepGeneratedSource Keeps the generate Java source, does not delete it (Boolean

value).
printDocumentInfo Prints useful information about the contents of the document,

such as ids and URLs (Boolean value).
printParseInfo Prints detailed information about the page parsing (Boolean

value).
printDOM Prints out the DOM tree for the page (Boolean value).
printAccessorInfo Prints the signature of each generated access method and

constant (Boolean value). This also lists the methods and
access constants that were not generated as a result of invalid
Java identifiers.

compileSource If true, the generated source is compiled; if false, doesn't
compile the source. Default is true (Boolean value).

inputDocument URL of the document to compile.
processSSI If true, processes server-side include directives. If false,

passes them through as comments. Default is false.
sourceOutputRoot Specifies the root directory for the generate source files. A full

package hierarchy is created under this directory. If not
specified, the file is created in the current directory. If -keep is
specified, the generated source files will be saved under this
directory.

classOutputRoot Specifies the root directory for the compiled class files. A full

 355

package hierarchy is created under this directory. If not
specified, the file is created in the current directory. The
metadata file for recompilation is also created in this directory.

compileSource If false, the source code will not be generated or compiled. This
is useful with the documentOutput option, for validating
documents, and for printing information about the documents.
Default is true (Boolean value).

documentOutput Writes the document, after DOM editing, to the file. This is
useful for pages where the URLs must be mapped to reference
dynamic pages, but there is no other dynamic content. Normally
used with createCode="false".

warnings Enables or disables the printing warnings. This is a Boolean
value, default is to enable warnings.

Context: <xmlc>

<inputDocument> Elements

<inputDocument> Specifies the document to compile.

Attributes:

url URL of the document to compile.
processSSI If true, processes server-side include directives. If false, passes

them through as comments. Default is false.
documentFormat The format of the document. Value is one of xml, html, or

unspecified. If unspecified, then the first line of the file is checked
for an XML header. If an XML header is found, xml is assumed;
otherwise html is assumed. The default is unspecified. This
attribute is only required for parsing XML files that don't have a XML
header as the first line.

Context: <xmlc>

Content: <include>

<include/> Indicates that a file is included by the source document. This is normally only
specified by the metadata files that XMLC creates to support automatic recompilation. They will
be created when server-side includes are used. This tag may be nested to indicate nested
includes.

Attributes:

url Filename or URL of the included file. Relative names are interpreted
as being relative to the including file.

recompileSource Specifies the classpath-relative path of the source file that the
recompilation factory will use. This is compiled into the class as the
value of the XMLC_SOURCE_FILE field. If not specified, the file path is
generated by converting the package name into a file path and

 356

merging with the base name of the source file.

Context: <inputDocument>

Content: <include>

<parser> Elements

<parser> Specifies the parser and parsing options.

Attributes:

name Name of the parser. The valid values are as follows:

tidy— Use the Tidy parser for parsing HTML. This is the default for HTML.
Validation is always done by this parser.

swing— Use the Swing parser for parsing HTML. Limited validation is always done
by this parser.

xerces— Use the Xerces parser for parsing XML. This is the only XML parser and
is the default. Validation is optional with this parser. The default is to validate.

validate Changes the default document validation mode of the parser. An error is
generated if the value isn't supported by the parser. This is a Boolean value,
and if unspecified, the default parse validation is used.

warnings Enables or disables the printing warnings. This is a Boolean value, and the
default is to enable warnings.

Context: <xmlc>

Content: <xcatalog/>

<xcatalog/> Specifies an XCatalog file to use in resolving external entities when parsing XML
files. This element may be specified multiple times. The catalogs will be searched in the order
specified.

Attribute:

url The URL of the XML catalog file.

Context: <parser>

<html> Elements

<html> Section containing HTML-specific options.

Attribute:

 357

encoding Specifies the encoding to use when reading a HTML document. This is an
HTML encoding name, not a Java encoding name.

Context: <xmlc>

Content: <htmlTagSet>, <htmlTag>, <htmlAttr>, <compatibility>

<htmlTagSet/> Adds a predefined set of proprietary HTML tag and attributes to the list of
valid HTML tags. This option is only used by the Tidy parser.

Attributes:

tagSet The name of the tag set. The following tag set is defined:

cyberstudio— Tags added by Adobe CyberStudio. These tags are for CyberStudio's
own use, and are assumed to be ignored by browsers.

Content: <html>

<htmlTag/> Adds a proprietary tag to a set of valid HTML tags.

Attributes:

name The name of the tag.
inline This tag is a character-level element.
block This tag is for block-like elements; for example, paragraphs and lists.
empty The tag does not have a closing tag.
optclose The closing tag is optional.

Context: <html>

<htmlAttr/> Adds a proprietary attribute to the list of valid HTML attributes. The attribute will
be allowed on all tags. This option is only used by the Tidy parser.

Attribute:

name The name of the attribute. It will be allowed for all HTML tags.

Context: <html>

<compatibility> Enables compatibility with the way older versions of XMLC handled
HTML.

Attributes:

oldClassConstants Older versions of XMLC generated HTML class attribute constants
as all upper-case (for example, CLASS_DELETEROW), with values
being case-preserved. If a true value, this option will reproduce the
old behavior. This option is intended to aid in the porting of
existing applications; it might not be supported in future releases.

oldNameConstants Older versions of XMLC generated HTML name attribute

 358

constants as all upper-case (for example, NAME_INPUT), with
values being case-preserved. If a true value, this option will
reproduce the old behavior. This option is intended to aid in the
porting of existing applications; it might not be supported in future
releases.

Context: <html>

DOM Editing Elements

<domEdits> This is a section containing DOM editing specifications. These are modifications
done to elements in the DOM during the compilation of a document.

Context: <xmlc>

Content: <urlEdit>, <urlMapping>, <urlRegExpMapping>, <deleteElement>

<elementEdit> This is an abstract type used as a base for all element editing definitions. This
provides for the definition of which attributes and elements are to be operated on by the derived
edit definitions.

Attributes:

elementIds Restricts replacement to the elements matching any of the ids in the
space-separate list.

elementClasses Restricts replacement to the elements matching any of the class
names in the space-separate list. These are class attribute values as
specified by the HTML CLASS attribute, not Java class names.

elementTags Restricts replacement to the elements matching any of the tag names
in the space-separate list. Case is ignored for HTML.

<urlEdit> This is an abstract type used as a base for all URL editing definitions.

Base Type: <elementEdit>

Attribute:

editAttrs List of attributes that are to be edited. If not specified, defaults to the
attributes that the XMLCDomFactory object for the document defines as
containing URLs.

Context: <domEdits>

<urlMapping/> Specifies the literal replacement of URLs in element attributes. When used in
the <domEdits> section, it applies globally to elements. When used in an element or sub-
document, it applies only to that context.

Base Type: <urlEdit>

Attributes:

 359

url The existing URL. If not specified, all URLs for the matching elements will be
replaced.

newUrl This is the replacement URL.

Context: <domEdits>

<urlRegExpMapping/> Specifies the regular expression replacement of URLs in element
attributes. If the regular expression matches, it is edited using a substituted replacement pattern.
POSIX-extended regular expressions are used, implemented by the gnu.regexp package. See
the documentation on this package for details of the regular expression and substitution syntax.
When used in the <domEdits> section, it applies globally to elements. When used in an element
or sub-document, it applies only to that context.

Base Type: <urlEdit>

Attributes:

regexp The POSIX regular expression to match against URL tag attributes.
subst The substitution expression to use to generate the replacement URL.

Context: <domEdits>

<deleteElement> Deletes all matching elements. This is often used to specify the element
class of mockup data that is to be deleted from the document.

Base Type: <elementEdit>

Context: <domEdits>

<documentClass> Elements

<documentClass> Specifies the properties of the XMLC document class to generate.

Attributes:

name The fully-qualified name of the class to generate. If the
generate attribute specifies class, then this is the name of
the class. Otherwise, this is the name of the interface to
generate, and the generated implementation will have Impl
appended to this name.

generate Specifies what kind of classes should be generated. Normally,
either class or both are used:

class— Generates a simple class (default).

interface— Generates just an interface, not the
implementation.

implementation— Generates an implementation of the

 360

interface (named in the form nameImpl) but not the interface.

both— Generates both an interface and an implementation.
delegateSupport Generates code for delegate support used by the XMLC

document class for reloading. This is a Boolean value, and
the default is false.

createMetaData Creates a XMLC metadata XML file in the same directory
as the class file. This is used by the XMLC recompilation
factory. It is a Boolean value, and the default is false.

recompilation Sets all options required for XMLC recompilation. It's a Boolean
value, and the default is false. Setting this to true results in one of
the following:

generate="both"
delegateSupport="true"
createMetaData="true"

extends Specifies the class that the generated class will extend.
This class must extend
org.enhydra.xml.xmlc.XMLObjectImpl for XML
documents, or
org.enhydra.xml.xmlc.html.HTMLObjectImpl for
HTML documents.

domfactory Specifies the Java class for creating DOM documents. This
class must implement org.enhydra.
xml.xmlc.dom.XMLCDomFactory. This option is not
supported for HTML documents. The DOM factory must
have a constructor that takes no arguments. This class
serves as a factory for Document objects, giving a
mechanism for creating DTD-specific DOMs. The specified
class must be available on the CLASSPATH.

dom Specifies one of a predefined set of DOM factories. This is a
shortcut for the domfactory attribute. The following are the
valid values, along with the XMLCDomFactory they map to:

lazydom— The LazyDOM, derived from the Xerces DOM.
XML: org.enhydra.xml.xmlc.
dom.lazydom.LazyDomFactory. HTML:
org.enhydra.xml.xmlc.dom.lazydom.
LazyHTMLDomFactory.

xerces— The Xerces DOM. XML: org.
enhydra.xml.xmlc.dom.xerces. XercesDomFactory.
HTML: org.enhydra.xml.xmlc.dom.xerces.
XercesHTMLDomFactory.

The default value, if neither the DomFactory or DOM attributes
are specified, is LazyDOM.

createGetTagMethods
true|false

Specifies that getTagXXX() methods should be generated.
These methods have a more generic return type than
getElementXXX() methods. By default, they return
org.w3c.dom.Element. This is useful when the developer
is constructing interfaces that are implemented by multiple
XMLC document classes. By having the interface contain

 361

both the getTagXXX() and setTextXXX() methods,
common code can be written to operate on the interfaces.

getTagMethodReturnType Specifies the return type generated for getTagXXX() methods.
One of the following values may be used instead of a class or
interface name:

Element— A shortcut for org.w3c.Element. This is the
default.

HTMLElement— A shortcut for
org.w3c.html.HTMLElement.

class— The actual class name of the element.

interface— The value obtained from the
nodeClassToInterface method in the XMLCDomFactory
object being used to compile the document.

Context: <xmlc>

Content: <implements/>

<implements/> Specifies the name of an interface the document class will implement.

Attribute:

name The fully qualified class name of the interface that the generated class will
implement.

Context: <documentClass>

<javaCompiler> Elements

<javaCompiler> Specifies information about the Java compiler.

Attribute:

javac Specifies the command name of the Java compiler to use.

Context: <xmlc>

Content: <javacOption>

<javacOption/> Specifies an option to pass to the Java compiler.

Attributes:

name The name of an option understood by the specified Java compiler. The flag
argument should contain the leading - or + characters.

 362

value The value to associate with the option. Omitted if the option doesn't take a value.

Context: <javaCompiler>

 363

Appendix C. The XMLObjectImpl Class
IN THIS APPENDIX

• Methods

XMLObjectImpl is the base class for all XML objects as viewed through the eyes of Enhydra
XMLC. It is heavily used by the XMLC compiler to generate the Java logic that constructs the
DOM template when loaded by the presentation object. To see how they are used in the generation
of a DOM template, use the xmlc command -keep option to preserve the XMLC- generated
intermediate Java source file.

The HTML-specific class extension of XMLObjectImpl is HTMLObjectImpl. It extends
XMLObjectImpl with HTML-specific methods: cloneNode(), close(), getAnchors(),
getApplets(), getBody(), getCookie(), getDomain(), getElementById(),
getElementsByName(), getForms(), getImages(), getLinks(), getReferrer(),
getTitle(), getURL(), open(), setBody(), setCookie(), setTitle(),
toDocument(), write(), writeln().

Methods
setDocument

This method sets the DOM document associated with this object and optional encoding.
setDocument() is used by buildDocument() to set the new document. It is done separately
from the constructor to allow buildDocument() to not be called immediately.

Returns: protected void

getDomFactory()

This method gets the XMLC DOM Factory associated with this document type and DOM
implementation.

Returns: protected abstract XMLCDomFactory

getDocument()

This method gets the actual document object. You should normally use the XMLObject methods
to access the document functionality; this method is for the initialization of derived objects.

Description copied from interface: XMLObjectgetDocument()

Specified by: getDocument in interface XMLObject

See also: XMLObject.getDocument()

Returns: Document

 364

getMIMEType()

This method gets the MIME type associated with the document; or null if none was associated.

Description copied from interface: XMLObject

Specified by: getMIMEType in interface XMLObject

See also: XMLObject.getMIMEType()

Returns: java.lang.String

getEncoding()

Gets the encoding specified in the document. Note that this is the symbolic name of the XML
encoding, which is not the same as the Java encoding names.

Description copied from interface: XMLObject

Specified by: getEncoding in interface XMLObject

See also: XMLObject.getEncoding()

Returns: java.lang.String

setDelegate(XMLObject delegate)

Sets the delegate object. Delegation is used to support automatic recompilation of documents into
XMLC objects. If the delegate is not null, the methods of the delegate are called to handle most of
the methods of this object.

Description copied from interface: XMLObject

Specified by: setDelegate in interface XMLObject

See also: XMLObject.setDelegate(org.enhydra.xml.xmlc.XMLObject)

Returns: void

getDelegate()

Gets the delegate, a key aspect of DOM auto-recompilation.

Specified by: getDelegate in interface XMLObject

See also: XMLObject.getDelegate()

Returns: XMLObject

cloneDeepCheck(boolean deep)

Checks that cloneNode on an entire document is done with the deep value set to true.

 365

Returns: void

cloneNode(boolean deep)

Clones the entire document. Derived objects should override this to get the correct derived type.
Cloning with deep being false is not allowed.

See also: Node.cloneNode(boolean)

Returns: abstract Node

getDoctype()

The document type declaration (see DocumentType) associated with this document. For HTML
documents, as well as XML documents without a document type declaration, this returns null.

The DOM Level 2 does not support editing the document type declaration, therefore docType
cannot be altered in any way, including through the use of methods, such as insertNode or
removeNode, inherited from Node.

Description copied from interface: Document

Specified by: getDoctype in interface Document

See also: Document.getDoctype()

Returns: DocumentType

getImplementation()

The DOMImplementation object that handles this document. A DOM application may use
objects from multiple implementations.

Description copied from interface: Document

Specified by: getImplementation in interface Document

See also: Document.getImplementation()

Returns: DOMImplementation

getDocumentElement()

This is a convenience attribute that allows direct access to the child node that is the root element
of the document. For HTML documents, this is the element with the tagName HTML.

Description copied from interface: Document

Specified by: getDocumentElement in interface Document

See also: Document.getDocumentElement()

Returns: Element

 366

importNode(Node importedNode, boolean deep) throws DOMException

Imports a node from another document to this document. The returned node has no parent; (parent
Node is null). The source node is not altered or removed from the original document; this method
creates a new copy of the source node. For all nodes, importing a node creates a node object
owned by the importing document, with attribute values identical to the source node's nodeName
and nodeType, plus the attributes related to namespaces (prefix, localName, and
namespaceURI). As in the cloneNode operation on a Node, the source node is not altered.
Additional information is copied as appropriate to the nodeType, attempting to mirror the
behavior expected if a fragment of XML or HTML source was copied from one document to
another, and recognizing that the two documents may have different DTDs in the XML case. The
following list describes the specifics for every type of node.

ELEMENT_NODE— Specified attribute nodes of the source element are imported, and the
generated Attr nodes are attached to the generated Element. Default attributes are not copied,
though if the document being imported into defines default attributes for this element name, those
are assigned. If the importNode deep parameter was set to true, the descendants of the source
element will be recursively imported and the resulting nodes reassembled to form the
corresponding subtree.

ATTRIBUTE_NODE— The specified flag is set to true on the generated Attr. The descendants of
the source Attr are recursively imported and the resulting nodes reassembled to form the
corresponding subtree. Note that the deep parameter does not apply to Attr nodes; they always
carry their children with them when imported.

TEXT_NODE, CDATA_SECTION_NODE, COMMENT_NODE— These three types of nodes inheriting
from CharacterData copy their data and length attributes from those of the source node.

ENTITY_REFERENCE_NODE— Only the EntityReference itself is copied, even if a deep
import is requested, since the source and destination documents might have defined the entity
differently. If the document being imported into provides a definition for this entity name, its
value is assigned.

ENTITY_NODE— Entity nodes can be imported; however, in the current release of the DOM, the
DocumentType is readonly. Ability to add these imported nodes to a DocumentType will be
considered for addition to a future release of the DOM. On import, the publicId, systemId,
and notationName attributes are copied. If a deep import is requested, the descendants of the
source Entity is recursively imported and the resulting nodes reassembled to form the
corresponding subtree.

PROCESSING_INSTRUCTION_NODE— The imported node copies its target and data values from
those of the source node.

DOCUMENT_NODE— Document nodes cannot be imported.

DOCUMENT_TYPE_NODE— DocumentType nodes cannot be imported.

DOCUMENT_FRAGMENT_NODE— If the deep option was set true, the descendants of the source
element will be recursively imported and the resulting nodes reassembled to form the
corresponding subtree. Otherwise, this simply generates an empty DocumentFragment.

NOTATION_NODE— Notation nodes can be imported; however, in the current release of the DOM,
the DocumentType is readonly. Ability to add these imported nodes to a DocumentType will
be considered for addition to a future release of the DOM. On import, the publicId and

 367

systemId attributes are copied. Note that the deep parameter does not apply to Notation
nodes, because they never have any children.

Description copied from interface: Document

Specified by: importNode in interface Document

See also: Document.importNode(org.w3c.dom.Node, boolean)

Returns: Node

createElement(java.lang.String tagName)

Creates an element of the type specified. The instance returned implements the Element interface,
so attributes can be specified directly on the returned object. In addition, if there are known
attributes with default values, Attr nodes representing them are automatically created and
attached to the element. To create an element with a qualified name and namespace URI, use the
createElementNS method.

Description copied from interface: Document

Specified by: createElement in interface Document

See also: Document.createElement(java.lang.String)

Throws: DOMException

Returns: Element

createElementNS(java.lang.String namespaceURI, java.lang.String
qualifiedName)

Creates an element of the given qualified name and namespace URI. HTML-only DOM
implementations do not need to implement this method.

Description copied from interface: Document

Specified by: createElementNS in interface Document

See also: Document.createElementNS(java.lang.String, java.lang.String)

Throws: DOMException

Returns: Element

createDocumentFragment()

Creates an empty DocumentFragment object.

Description copied from interface: Document

Specified by: createDocumentFragment in interface Document

 368

See also: Document.createDocumentFragment()

Returns: DocumentFragment

createTextNode(java.lang.String data)

Creates a Text node given the specified string.

Description copied from interface: Document

Specified by: createTextNode in interface Document

See also: Document.createTextNode(java.lang.String)

Returns: Text

createComment(java.lang.String data)

Creates a Comment node given the specified string.

Description copied from interface: Document

Specified by: createComment in interface Document

See also: Document.createComment(java.lang.String)

Returns: Comment

createCDATASection(java.lang.String data)

Creates a CDATASection node whose value is the specified string.

Description copied from interface: Document

Specified by: createCDATASection in interface Document

See also: Document.createCDATASection(java.lang.String)

Throws: DOMException

Returns: CDATASection

createProcessingInstruction(java.lang.String target, java.lang.String
data)

Creates a ProcessingInstruction node given the specified name and data strings.

Description copied from interface: Document

Specified by: createProcessingInstruction in interface Document

See also: Document.createProcessingInstruction()

 369

Throws: DOMException

Returns: ProcessingInstruction

createAttribute(java.lang.String qualifiedName)

Creates an Attr of the given name. Note that the Attr instance can then be set on an Element
using the setAttribute method. To create an attribute with a qualified name and namespace
URI, use the createAttributeNS method.

Description copied from interface: Document

Specified by: createAttribute in interface Document

See also: Document.createAttribute(java.lang.String)

Throws: DOMException

Returns: Attr

createAttributeNS(java.lang.String namespaceURI, java.lang. String
qualifiedName)

Creates an attribute of the given qualified name and namespace URI. HTML-only DOM
implementations do not need to implement this method.

Description copied from interface: Document

Specified by: createAttributeNS in interface Document

See also: Document.createAttributeNS(java.lang.String, java.lang.String)

Throws: DOMException

Returns: Attr

createEntityReference(java.lang.String name)

Creates an EntityReference object. In addition, if the referenced entity is known, the child list
of the EntityReference node is made the same as that of the corresponding Entity node. If
any descendant of the Entity node has an unbound namespace prefix, the corresponding
descendant of the created EntityReference node is also unbound (its namespace URI is
null). The DOM Level 2 does not support any mechanism to resolve namespace prefixes.

Description copied from interface: Document

Specified by: createEntityReference in interface Document

See also: Document.createEntityReference(java.lang.String)

Throws: DOMException

Returns: EntityReference

 370

getElementsByTagName(java.lang.String tagname)

Returns a NodeList of all the Elements with a given tag name in the order in which they would
be encountered in a pre-order traversal of the Document tree.

Description copied from interface: Document

Specified by: getElementsByTagName in interface Document

See also: Document.getElementsByTagName(java.lang.String)

Returns: NodeList

getElementsByTagNameNS(java.lang.String namespaceURI,
java.lang.String localName)

Returns a NodeList of all the Elements with a given local name and namespace URI in the
order in which they would be encountered in a pre-order traversal of the Document tree.

Specified by: getElementsByTagNameNS in interface Document

Description copied from interface: Document

See also: Document.getElementsByTagNameNS (java.lang.String,
java.lang.String)

Returns: NodeList

getElementById(java.lang.String elementId)

Returns the Element whose id is given by elementId. If no such element exists, returns null.
Behavior is not defined if more than one element has this id. The DOM implementation must
have information that says which attributes are of type id. Attributes with the name id are not of
type id unless so defined. Implementations that do not know whether attributes are of type id or
not are expected to return null.

Specified by: getElementById in interface Document

Description copied from interface: Document

See also: Document.getElementById(java.lang.String)

Returns: Element

getNodeName()

The name of this node, depending on its type; see the earlier list.

Description copied from interface: Node

See also: Node.getNodeName()

Throws: DOMException

 371

Returns: java.lang.String

getNodeValue()

The value of this node, depending on its type; see the earlier list. When it is defined to be null,
setting it has no effect.

Description copied from interface: Node

See also: Node.getNodeValue()

Throws: DOMException

Returns: java.lang.String

setNodeValue(java.lang.String nodeValue)

See also: Node.setNodeValue(java.lang.String)

Throws: DOMException

Returns: void

getNodeType()

A code representing the type of the underlying object, as defined earlier.

Description copied from interface: Node

See also: Node.getNodeType()

Returns: short

getParentNode()

The parent of this node. All nodes, except Attr, Document, DocumentFragment, Entity,
and Notation may have a parent. However, if a node has just been created and not yet added to
the tree, or if it has been removed from the tree, this is null.

Description copied from interface: Node

See also: Node.getParentNode()

Returns: Node

getChildNodes()

A NodeList that contains all children of this node. If there are no children, this is a NodeList
containing no nodes. The content of the returned NodeList is "live" in the sense that, for
instance, changes to the children of the node object that it was created from are immediately
reflected in the nodes returned by the NodeList accessors; it is not a static snapshot of the
content of the node. This is true for every NodeList, including the ones returned by the
getElementsByTagName method.

 372

Description copied from interface: Node

See also: Node.getChildNodes()

Returns: NodeList

getFirstChild()

The first child of this node. If there is no such node, this returns null.

Description copied from interface: Node

See also: Node.getFirstChild()

Returns: Node

getLastChild()

The last child of this node. If there is no such node, this returns null.

Description copied from interface: Node

See also: Node.getLastChild()

Returns: Node

getPreviousSibling()

The node immediately preceding this node. If there is no such node, this returns null.

Description copied from interface: Node

See also: Node.getPreviousSibling()

Returns: Node

getNextSibling()

The node immediately following this node. If there is no such node, this returns null.

Description copied from interface: Node

See also: Node.getNextSibling()

Returns: Node

getAttributes()

A NamedNodeMap containing the attributes of this node (if it is an Element) or otherwise null.

Description copied from interface: Node

 373

See also: Node.getAttributes()

Returns: NamedNodeMap

getOwnerDocument()

The Document object associated with this node. This is also the Document object used to create
new nodes. When this node is a Document or a DocumentType which is not used with any
Document yet, it is null.

Description copied from interface: Node

See also: Node.getOwnerDocument()

Returns: Document

insertBefore(Node newChild, Node refChild) throws DOMException

Inserts the node newChild before the existing child node refChild. If refChild is null, insert
newChild at the end of the list of children. If newChild is a DocumentFragment object, all
of its children are inserted, in the same order, before refChild. If newChild is already in the
tree, it is first removed.

Description copied from interface: Node

See also: Node.insertBefore(org.w3c.dom.Node, org.w3c.dom.Node)

Throws: DOMException

Returns: Node

replaceChild(Node newChild, Node oldChild) throws DOMException

Replaces the child node oldChild with newChild in the list of children, and returns the
oldChild node. If newChild is a DocumentFragment object, oldChild is replaced by all
of the DocumentFragment children, which are inserted in the same order. If newChild is
already in the tree, it is first removed.

Description copied from interface: Node

See also: Node.replaceChild(org.w3c.dom.Node, org.w3c.dom.Node)

Throws: DOMException

Returns: Node

removeChild(Node oldChild) throws DOMException

Removes the child node indicated by oldChild from the list of children and returns it.

Description copied from interface: Node

See also: Node.removeChild(org.w3c.dom.Node)

 374

Throws: DOMException

Returns: Node

appendChild(Node newChild)

Description copied from interface: Node

Throws: DOMException

Returns: Node

normalize()

Puts all Text nodes in the full depth of the sub-tree underneath this Node, including attribute
nodes, into a "normal" form where only markup (for example, tags, comments, processing
instructions, CDATA sections, and entity references) separates Text nodes; that is, there are
neither adjacent Text nodes nor empty Text nodes. This can be used to ensure that the DOM
view of a document is the same as if it were saved and re-loaded, and is useful when operations
(such as XPointer lookups) that depend on a particular document tree structure are to be used. In
cases where the document contains CDATASection, the normalize operation alone may not be
sufficient, since XPointers do not differentiate between Text nodes and CDATASection nodes.

See also: Node.normalize()

Description copied from interface: Node

Returns: void

supports(java.lang.String feature, java.lang.String version)

Tests whether the DOM implementation implements a specific feature and that that feature is
supported by this node.

Description copied from interface: Node

See also: Node.supports(String, String)

Returns: boolean

getNamespaceURI()

The namespace URI of this node, or null if it is unspecified. This is not a computed value that is
the result of a namespace lookup based on an examination of the namespace declarations in scope.
It is merely the namespace URI given at creation time. For nodes of any type other than
ELEMENT_NODE and ATTRIBUTE_NODE, and nodes created with a DOM Level 1 method, such
as createElement from the Document interface, this is always null. Per the Namespaces
section in the XML Specification, an attribute does not inherit its namespace from the element it is
attached to. If an attribute is not explicitly given a namespace, it simply has no namespace.

See also: Node.getNamespaceURI()

Description copied from interface: Node

 375

Returns: java.lang.String

getPrefix()

The namespace prefix of this node, or null if it is unspecified. Setting this attribute, when
permitted, changes the nodeName attribute, which holds the qualified name, as well as the
tagName and name attributes of the Element and Attr interfaces, when applicable. Changing
the prefix of an attribute that is known to have a default value, does not make a new attribute with
the default value and the original prefix appear, since the namespaceURI and localName do
not change.

Description copied from interface: Node

See also: Node.getPrefix()

Returns: java.lang.String

setPrefix(java.lang.String prefix)

See also: Node.setPrefix(java.lang.String)

Returns: void

getLocalName()

Returns the local part of the qualified name of this node. For nodes created with a DOM Level 1
method, such as createElement from the Document interface, it is null.

Description copied from interface: Node

See also: Node.getLocalName()

Returns: java.lang.String

hasChildNodes()

This is a convenience method to allow easy determination of whether a node has any children.

Description copied from interface: Node

See also: Node.hasChildNodes()

Returns: boolean

hasAttributes()

Returns whether this node (if it is an element) has any attributes.

Description copied from interface: Node

See also: Node.hasAttributes()

Returns: boolean

 376

toDocument()

Converts the document to a string representation of the document, that is, a string containing XML.
The results can be parsed into the same DOM hierarchy. The formatting provided by this method
does not begin to cover all of the issues involved with publishing a XML document, such as
character encoding. Use the org.enhydra.xml.io.DOMFormatter class if more options are
required.

Description copied from interface: XMLObject

See also: XMLObject.toDocument()

Returns: java.lang.String

syncWithDocument(Node node)

Generated function to synchronize the fields used by the access methods. This synchronizes just
the node and is not recursive.

Returns: protected abstract void

syncAccessMethods()

Initializes the fields used by the generated access methods from the current state of the document.
Missing DOM element ids will result in their access method returning null.

Specified by: syncAccessMethods in interface XMLObject

See also: XMLObject.syncAccessMethods()

Description copied from interface: XMLObject

Returns: void

isURLAttribute(Element element, java.lang.String attrName)

Specified by: isURLAttribute in interface DocumentInfo

See also: DocumentInfo.isURLAttribute(org.w3c.dom.Element,
java.lang.String)

Returns: boolean

doSetText(Element element, java.lang.String text)

Used internally to implement a setText<attributeValue>() method. Adds check for null
value and helps to minimize the amount of generated code.

Returns: protected final void

 377

Appendix D. The Base Presentation Object
IN THIS APPENDIX

• The Base Presentation Object

The Base Presentation Object

The Base Presentation Object is a possible strategy for enforcing a consistent, controller-like
methodology for handling "events" generated by Web page interactions with the client. It is not
inherent to XMLC development, instead serving as a possible strategy that an architect might
propose. It is the strategy that was selected to implement the ShowFloor application.

As an abstract class, BasePO methods are inherited by the child presentation objects, or POs.
These presentation objects are invoked from Web pages with a parameter named event and a
value such as browse, edit, login, register, or whatever value expected by the developer.
When no event parameter is passed, a default handler is provided.

Listing D.1 contains the complete code for BasePO.java. Please refer to Chapter 9,
"Presentation Strategies," for an expanded discussion of the Base Presentation Object and each of
its methods.

Listing D.1 BasePO.java

package com.otterpod.sfa.presentation;

import com.otterpod.sfa.business.vendor.*;
import com.otterpod.sfa.business.visitor.*;
import com.otterpod.sfa.business.booth.*;
import com.otterpod.sfa.*;

import com.lutris.appserver.server.StandardAppUtil;
import org.enhydra.xml.xmlc.XMLObject;
import com.lutris.appserver.server.httpPresentation.*;
import com.lutris.appserver.server.session.*;
import com.lutris.appserver.server.Enhydra;
import com.lutris.xml.xmlc.*;
import com.lutris.xml.xmlc.html.*;
import com.lutris.logging.*;
import com.lutris.util.KeywordValueException;
import com.lutris.appserver.server.user.User;
import org.w3c.dom.*;
import org.w3c.dom.html.HTMLElement;
import java.lang.reflect.*;
import java.util.*;

/*
 * This is the parent Presentation object.
 * All presentation objects extend this class.
 *
 * The run() method looks for an event parameter and then calls
 * handle<EventName>. If the "event" parameter is not defined
 * then the handleDefault() method is called in your child class.

 378

 *
 */
public abstract class BasePO implements HttpPresentation {
 private static String EVENT = "event";
 private static String STANDARD_METHOD_PREFIX = "handle";

 /*
 * This is the procedure that is called if there is no "event"
 * HTTP parameter found. It must be overridden by the subclass to
 * do default processing or error checking/handling.
 *
 * Returns the String representation of the HTML or other format
 * of the document to be displayed. This method would need to be
changed
 * if you wanted to return binary data as well.
 */
 public abstract XMLObject handleDefault()
 throws HttpPresentationException;

 /*
 * This method should be implemented in the subclass so that it
returns
 * the authorization level necessary to access the PO.
 */
 abstract protected int getRequiredAuthLevel();

 /*
 * Saved input and output context, and session data
 */
 protected HttpPresentationComms myComms = null;
 protected ShowFloorSessionData mySessionData = null;

 /*
 * Gets HttpPresentation object
 *
 * Returns: The saved comms objects
 * to whichever subclass needs it
 */
 public HttpPresentationComms getComms() {
 return this.myComms;
 }

 /*
 * Gets the session data
 *
 * Returns: session data
 */
 public ShowFloorSessionData getSessionData() {
 return this.mySessionData;
 }

 /*
 * This implements the run method in HttpPresentation.
 *
 * @param HttpPresentationComms
 * @exception Exception
 */
 public void run(HttpPresentationComms comms) throws Exception {
 // Reroute based on content.
 rerouteForContent(comms);

 379

 // Initialize new or get the existing session data
 initSessionData(comms);

 // Check if the user can access the given page.
 checkAuthLevel();

 try {
 // Handle the incoming event request
 handleEvent(comms);
 } catch (Exception e) {
 throw new Exception("Exception in run " + e);
 }
 }

 /*
 * Method that determines which content to output based on
 * the accept type.
 */
 protected void rerouteForContent(HttpPresentationComms comms)
 throws ShowFloorPresentationException {
 DeviceUtils.rerouteForContent(comms);
 }

 /*
 * Method to get or create the ShowFloorSessionData object
 * from the user session. This object is saved in the
 * ShowFloorPresentation object
 */
 protected void initSessionData(HttpPresentationComms comms)
 throws ShowFloorPresentationException {

 this.myComms = comms;
 try {
 Object obj =
comms.sessionData.get(ShowFloorSessionData.SESSION_KEY);
 // If we found the session data, save it in a private data
member
 if (obj != null) {
 this.mySessionData = (ShowFloorSessionData) obj;
 } else {
 // If no session data was found,
 // create a new session data instance
 this.mySessionData = new ShowFloorSessionData();

comms.sessionData.set(ShowFloorSessionData.SESSION_KEY,
this.mySessionData);
 }
 } catch (KeywordValueException ex) {
 throw new ShowFloorPresentationException("Trouble
initializing user", ex);
 }
 }

 /*
 * Return the current authorization level (set during login)
 * Returns: an int equal to the current authorization level.
 */
 protected int getCurrentAuthLevel()
 throws ClientPageRedirectException,
ShowFloorPresentationException { int accessLevel = 0;

 380

 try {
 accessLevel = getSessionData().getUserAuth();
 } catch (Exception ex) {
 throw new ShowFloorPresentationException("Trouble getting
current
authorization level", ex);
 }
 return accessLevel;
 }

 /*
 * Checks the session data to see if the user has the
authorization to
 * access the given page. Authorization levels include:
 * UNAUTH_USER (0) — login not required.
 * MYSFA_USER (1) — login as mySFA user required.
 * ADMIN_USER (2) — login as administrator required.
 *
 * Redirects to login page if user not authorized to access page.
 */
 protected void checkAuthLevel()
 throws ClientPageRedirectException,
ShowFloorPresentationException {
 int currentAuth = getCurrentAuthLevel();

 try {
 if (currentAuth < getRequiredAuthLevel()) {
 if (currentAuth > ShowFloorConstants.MYSFA_USER) {
 throw new
ClientPageRedirectException(ShowFloorConstants.ADMIN_LOGIN_PAGE);
 }

 throw new ClientPageRedirectException("/" +
ShowFloorConstants.HTML_PAGE);
 }
 } catch (Exception ex) {
 throw new ShowFloorPresentationException("Trouble
checking for user login
status", ex);
 }
 }

 /*
 * Method to call the proper method for the incoming event
 *
 * @param HttpPresentationComms
 * @exception Exception
 */
 public void handleEvent(HttpPresentationComms comms) throws
Exception {
 String event = comms.request.getParameter(EVENT);
 XMLObject returnDoc = null;
 try {
 if (event == null || event.length() == 0) {
 returnDoc = handleDefault();
 } else {
 returnDoc = getPage(event);
 }
 comms.response.writeDOM(returnDoc);
 } catch (Exception e) {

 381

 throw new Exception("Exception writing dom:" + e);
 }
 }

 /*
 * Logs user out from the session by setting the usr to null
 * in the session data.
 */
 public XMLObject handleLogout() throws
ShowFloorPresentationException {
 try {
 mySessionData = null;
 SessionManager sessionManager =
myComms.session.getSessionManager();
 sessionManager.deleteSession(myComms.session);
 throw new
ClientPageRedirectException(ShowFloorConstants.HTML_PAGE);

 } catch (Exception e) {
 throw new ShowFloorPresentationException("Trouble logging
out user", e);
 }
 }

 /*
 * If an event parameter is defined then this builds and invokes
 * the method that handles that event.
 */
 public XMLObject getPage(String event) throws Exception {
 try {
 Method method =
this.getClass().getMethod(toMethodName(event),null);
 XMLObject thePage = (XMLObject) method.invoke(this, null);
 return thePage;

 } catch (InvocationTargetException ex) {

 // Rethrow the originating exception if as it
 // should be propagated as is.
 // It could be a page redirect exception, etc.
 if (ex.getTargetException() instanceof Exception) {
 throw (Exception) ex.getTargetException();
 } else if (ex.getTargetException() instanceof Error) {
 throw (Error) ex.getTargetException();
 } else {
 throw ex;
 }
 } catch (NoSuchMethodException ex) {

 // The method to handle the event does not exist.
 throw new ShowFloorPresentationException("NO EVENT
HANDLER FOUND FOR EVENT: "
+ event, ex);
 } catch (IllegalAccessException ex) {
 // The method to handle the event does not exist.
 throw new ShowFloorPresentationException("ILLEGAL ACCESS
TO EVENT HANDLER (is
it public?): " + event, ex);
 }
 }

 382

 /*
 * This sets the first letter of the event parameter value in
order
 * to adhere to Java method naming conventions.
 *
 * @param String event the incoming name of the event
 * Returns: String the properly capitalized name
 */
 private String toMethodName(String event) {

 //STANDARD_METHOD_PREFIX is the string "handle"
 StringBuffer methodName = new
StringBuffer(STANDARD_METHOD_PREFIX);

 methodName.append(Character.toUpperCase(event.charAt(0)));

 if (event.length() > 1) {
 methodName.append(event.substring(1));
 }

 return methodName.toString();
 }

 /*
 * Returns the application object associated with the
 * current request.
 *
 * Returns: the application object.
 */
 public ShowFloor getApplication() {
 return (ShowFloor) Enhydra.getApplication();
 }

 /*
 * Method to write a debugging message to the debug log
 * channel when the DEBUG flag is turned on
 */
 public static void writeDebugMsg(String msg) {
 Enhydra.getLogChannel().write(Logger.DEBUG, msg);
 }
 /*
 * Returns true if the given string is null, empty, or contains
 * only white space.
 */
 protected static boolean isNullField(String field) {
 if (field == null) {
 return true;
 }

 if (field.trim().equals("")) {
 return true;
 }
 return false;
 }

 /*
 * Returns true if the given string is null, empty, or contains
 * only white space.
 */
 protected static boolean checkField(String field, int size) {
 if (field == null || field.equals("")) {

 383

 return false;
 }
 if (field.length() <= size) {
 return true;
 }
 return false;
 }

}

 384

Appendix E. References
IN THIS APPENDIX

• References

Arrington, C. T. Enterprise Java with UML. John Wiley & Sons, 2001.

Beasley, Rick, Kenneth Michael Farley, John O'Reilly, and Leon Squire. Voice Application
Development with VoiceXML. Sams Publishing, 2001.

Bradley, Neil. The XML Companion. Addison-Wesley, 1998.

Daconta, Michael C., and Al Saganich. XML Development with Java 2. Sams Publishing, 2000.

Feng, Yu, and Jun Zhu. Wireless Java Programming with J2ME. Sams Publishing, 2001.

Forta, Ben, with Edwin Smith, Scott M. Stirling, Larry Kim, Roger Kerr, David Aden, and Andre
Lei. JavaServer Pages Application Development. Sams Publishing, 2001.

Fowler, Martin, with Kendall Scott. UML Distilled: A Brief Guide to the Standard Object
Modeling Language. 2nd ed. Addison-Wesley, 1999.

Hunter, Jason, with William Crawford. Java Servlet Programming. 2nd ed. O'Reilly, 2001.

Maruyama, Hiroshi, Kent Tamura, and Naohiko Uramoto. XML and Java: Developing Web
Applications. Addison-Wesley, 1999.

McLaughlin, Brett. Java & XML. 2nd ed. O'Reilly, 2001.

Ray, Erik T. Learning XML. O'Reilly, 2001.

Richter, Charles. Designing Flexible Object-Oriented Systems with UML. New Riders Publishing,
1999.

Watt, Andrew H. Designing SVG Web Graphics. New Riders Publishing, 2002.

	Table of Content
	Copyright
	Copyright ?2002 by Sams Publishing
	Trademarks
	Warning and Disclaimer
	Credits
	Dedication

	About the Author
	Acknowledgments
	Lutris Technologies

	Tell Us What You Think!
	Introduction
	Enhydra
	Who Should Read This Book
	Lutris Technologies, Steward of Enhydra.org
	Servlet Programming
	Organization
	About OtterPod Productions
	Conventions and Tools
	Enhydra 3 Versus Lutris EAS 4
	Downloads
	The Book's CD

	Chapter 1. Enhydra and XMLC
	A Taste of Enhydra XMLC
	
	Figure 1.1. Using the id attribute to identify markup content for dynamic update.
	Figure 1.2. Converting an HTML page to a DOM source tree.
	Figure 1.3. Using the XMLC-generated convenience method to create a dynamically transformed DOM result tree.

	Modern Three-Tier Application Design
	
	Figure 1.4. High-level view of a three-tier Web application architecture.

	A Fortuitous Decision: Going with XML (Eventually)
	Placing Value on XMLC From Your Unique Perspective
	Table 1.1. Perspectives

	Enhydra Java/XML Application Server
	The Enhydra Story
	A Genesis in Consulting, Not System Vendor Engineering
	The Practical Enhydra Application Framework Model

	Enhydra.org, the Open Source Project
	
	Figure 1.5. Open source lineage of the Enhydra universe.

	Other Enhydra.org projects
	Table 1.2. Selected Enhydra.org Projects

	Open Source Delivers Wireless
	Summary

	Chapter 2. XMLC Development
	Taking Control from HTML
	Development Flow with XMLC
	A Sample Project Scenario
	Figure 2.1. Mocked-up SFAdmin Login screenshot.

	Designer and Developer Assign ids
	Figure 2.2. How id attributes map to Java/DOM methods.
	Figure 2.3. Assigning selected id attributes.

	The Developer's Path with XMLC
	Working with HTML and ids
	Listing 2.1 SFAdminLogin.html

	The xmlc Command

	The Document Object Model
	
	Figure 2.4. DOM node types.

	DOM Nodes Represent HTML/XML Objects
	Table 2.1. Node Types
	Figure 2.5. Labeling objects in a WML document.
	Figure 2.6. WML objects as nodes represented in a DOM tree.

	DOM Navigation and Manipulation
	Table 2.2. Commonly Used Node Methods in XMLC Development
	Figure 2.7. Examples of methods associated with the contextual position of the current node.

	XMLC-Supported DOM Packages
	Table 2.3. HTML Table-specific Sub-interfaces of the Node Interface

	xmlc Value to DOM Programming
	Examining the DOM Tree Representation of SFAdminLogin
	Listing 2.2 Output from xmlc -dump -dom xerces SFAdminLogin.html

	Examining the Generated DOM Java Code

	Resuming xmlc and the Development Phase
	Linking the DOM class with the SFAdmin Application
	EventLoginLogo
	LoginErrorMsg and ErrorMsgRow
	Mapping the DOM to a Client Response

	Loosely Coupled Development
	The Designer's Path with XMLC
	Making the Inevitable Changes

	XMLC for Servlet Programming
	
	Listing 2.3 Standard Servlet Using XMLC

	Internationalization
	
	Figure 2.8. Using XMLC templates to achieve localizations.

	Device Independence in an XML World
	XMLC Benefits
	Summary

	Chapter 3. Presentation Technologies
	Publishing Frameworks for Adapting to the Future
	Presentation Versus Publishing Frameworks

	Model-View-Controller
	
	Figure 3.1. J2EE Blueprints' interpretation of Model-View-Control.

	Applying MVC to Presentation/Publishing Technologies

	Servlet Presentation Programming
	
	Listing 3.1 Simple HTML Presentation Development with Servlet Programming

	JavaServer Pages
	JSP Expressions, Declarations and Scriptlets
	Listing 3.2 Expression, Declaration, and Scriptlet Usage in a JSP Page

	JSP Directives
	JSP, Servlets, and JSP Implicit Objects

	JSP Taglibs
	
	Table 3.1. Tag Handler Types and Their Required Methods
	Creating a Custom Tag
	Listing 3.3 Using Jakarta's Taglib for Iterating an Array

	Cascading Stylesheets
	
	Listing 3.4 Using Cascading Stylesheets to Remove Presentation Information from HTML
	Listing 3.5 Java Presentation Logic for Updating the HTML Page with Current Data

	XSLT
	
	Figure 3.2. The somewhat redundant relationship of CSS to XSL, both products of W3C.org.
	Figure 3.3. XSLT re-purposes a single document to suit multiple client applications.

	How XSLT Works
	Listing 3.6 Creating an HTML Table Shoestring Attribute
	Listing 3.7 Updating the Length Value to Reflect the Units Change

	XSLT Summary

	Cocoon
	XSP for Dynamic Content Creation
	Cocoon Trade-Offs

	Final Comparative Discussion
	XMLC Views Markup Pages as Template Object Representations
	XMLC Sticks with One Programming Language: Java
	Figure 3.4. Relative use of Java and Scripting/XSLT templating.

	XMLC Enables Type-Safe DOM Programming
	XMLC Is a True Template Presentation Technology
	XMLC Greatly Simplifies DOM Programming
	XMLC Is Designer-Friendly
	XMLC Eliminates the Need to Introduce New Tags (Elements)
	XMLC Is a True Loosely Coupled, Object-Oriented Presentation Strategy
	The XMLC Mechanism Is the Same for Everybody
	XMLC Detects Errors Early
	XMLC Is Built Heavily on Standards
	Taglibs Do Not Make JSP Like XMLC

	Templates, MVC, and XMLC
	
	Figure 3.5. Relationship of markup language and XMLC/JSP from the perspective of the HTML/XML designer.

	MVC for XMLC?

	Summary

	Chapter 4. The ShowFloor ASP Application
	Building a Device-Independent Application
	
	Figure 4.1. The possibilities of devices.

	Consider the Possibilities
	Compelling, Meaningful Roles for the Right Device
	Voice Portals
	Smart Devices
	Phone Browser Devices

	XML, the Common Device Language

	The ShowFloor Application
	Supporting an ASP Business Model

	Essential UML
	The Cycle Begins
	Getting Started with Use Cases
	Figure 4.2. Actors of the administration system.

	Modeling the ShowFloor Application
	
	Table 4.1. ShowFloor Actors and Nouns

	A Use Case
	Summarizing Interactions
	Figure 4.3. Expanded version of actors of the Showfloor administration system.

	Identifying Objects: Entity, Boundary, Control, Lifecycle
	From Use Case Scenario to Sequence Diagram
	Figure 4.4. The sequence diagram for an Assign Vendor Booth use case.

	Device-Driven Tasks
	Table 4.3. Matching Roles and Tasks with Devices

	Summary

	Chapter 5. Enhydra, Java/XML Application Server
	Enhydra and J2EE
	Enhydra XMLC and J2EE

	Enhydra Application Framework Genesis
	Using EAF for the ShowFloor Demo

	The Package Tour
	
	Table 5.1. The com.lutris Package
	Table 5.2. The org.enhydra Package
	Table 5.3. The javax Package
	Table 5.4. The org.apache Package
	Table 5.5. The org.w3c Package

	Enhydra Documentation and Source Code
	Figure 5.1. Enhydra 3 JavaDoc.

	Development, Runtime, and Deployment
	
	Figure 5.2. High-level view of the Enhydra 3 environment.

	Runtime and Deployment
	Enhydra Director

	Enhydra Multiserver
	Enhydra Administration Console
	Configuration Files
	Development Overview
	Figure 5.3. XMLC dialog inside the Forte Development environment.

	Building and Running ShowFloor
	Application Bootstrapping with AppWizard
	Figure 5.4. The first two AppWizard screens.
	Figure 5.5. Configuring AppWizard to generate a Web Container application.
	Figure 5.6. The last two AppWizard screens.

	Enhydra Application Source Tree
	Table 5.6. Enhydra Application Directories

	The ShowFloor Application Object
	Table 5.7. Selected Fields From the Enhydra StandardApplication Class
	Listing 5.1 ./src/showFloor/SFA.java

	Building the SFA Stub Application
	Launching the ShowFloor Stub Application
	Listing 5.2 SFA/startup
	Listing 5.3 SFA/output/conf/servlet/servlet.conf
	Figure 5.7. The SFA stub application presentation.

	Enhydra Multiserver
	Connection Methods
	Figure 5.8. Multiple scenarios for sending an HTTP request to Enhydra.

	Classloaders for Application Partitioning

	Configuration Files
	multiserver.conf
	Table 5.8. Expected Name-Value Pairs in multiserver.conf

	[your application].conf
	Listing 5.4 input/conf/SFA.conf
	The Config Object

	multiserverAdmin.conf
	Listing 5.5 multiserverAdmin.conf

	Logs, Filters, Channels, and Connections
	Table 5.9. Supported Enhydra Logging Levels

	Administration Console
	Enhydra Director
	Session Affinity for Simple Fail-Over Protection
	Figure 5.9. Director for server-level load balancing and fail-over.

	Load-Balancing Algorithms

	The Enhydra Application Framework
	
	Figure 5.10. Source organization of presentation, business, and data tiers.

	Presentation Object (./src/presentation)
	Business Object (./src/business)
	Data Object (./src/data)
	The Pre-Request Application Object
	How a Session Begins

	Enhydra Services and the EAF Runtime
	
	Figure 5.11. How a request flows through the Enhydra Application Framework for a single application.

	Presentation Manager
	Figure 5.12. How Presentation Manager fires off presentation objects.
	Listing 5.6 ./showFloor/src/presentation/WelcomePresentation.java
	Table 5.10. Selected Fields of the Comms Object

	Session Manager
	Tracking and Controlling Session Duration
	Implementing Session Level Fail-Over

	Database Manager
	ShowFloor Database

	Enhydra DODS
	
	Figure 5.13. DODS with Product and Vendor packages created.
	Figure 5.14. Referencing the Vendor data object from the Product attributes for a one (vendor)-to-many (products) relationship.
	Figure 5.15. Product data object with a reference to the Vendor data object.
	Listing 5.7 ./showFloor/src/data/data.doml
	Table 5.11. Auto-Generated Files From Enhydra DODS

	QueryBuilder for Advanced Queries

	Debugging an Enhydra Application
	Admin Console Debugging
	Figure 5.16. Entering Debug mode from the Administration Console.

	Deploying Enhydra Applications
	Summary

	Chapter 6. XMLC Basics
	HTML in an XML World
	XML Rules for Well-Formed Documents
	Document Models and Standards
	HTML, the Special Case

	Selected XML Basics
	Document Prolog
	Listing 6.1 Welcome.wml

	Elements and Attributes
	Entities and Entity References

	Selected HTML Basics
	id and class Attributes
	DIV and SPAN Elements
	Entities and Entity References

	Selected DOM Topics
	DOM Structure
	DOM Document
	The Node
	Table 6.1. Node Types and Their (Possible) Children

	Node Versus Document
	CDATA Section
	How DOM Handles HTML Entities
	Table 6.2. Selected HTML Entities

	XMLC Features and Functions
	At Compile-Time
	Text-Setting Accessor Methods
	Element-Retrieving Accessor Methods
	Accessor Methods for XML Documents
	A Stable of Parsers for Flexibility

	At Runtime
	Table 6.3. XMLC Packages
	Runtime Objects
	Dynamic Loading and Auto-Recompilation
	Strong Document-Specific Type Safety
	Writing Out the DOM

	Working with Templates
	How XMLC Constructs a DOM Class
	Impact of Inserting an id attribute

	Enhancing Performance with LazyDOM
	A Read-Only DOM Template for Reference
	When LazyDOM Isn't the Answer

	Summary

	Chapter 7. The xmlc Command
	Syntax and Formats
	Command Line Options

	The options.xmlc Format
	xmlc Command Options
	Viewing the Intermediate Java DOM Source File
	Selecting Parsers
	HTML Tidy Versus Swing
	LazyDOM Versus Xerces

	Changing URLs During the Development Process
	Discarding Mocked-Up Data
	Listing 7.1 SFA/presentations/VendorList.html
	Handling Multiple Classes

	Getting Progress Information and More from xmlc
	What Methods Were Created by XMLC?
	Getting URL Info
	Getting Parser Information
	Watching the Progress of XMLC Compilation
	Dictating Generated Class Names
	-validate and XML

	Character Sets and Encoding

	Some Runtime Options
	Runtime DOM Debugging
	How to Measure DOM Behavior
	Table 7.1. XMLC Metadata Directives

	Auto-Recompilation and Auto-Class Loading
	Reasons for Using Auto-Recompilation
	xmlc Options for Auto-Compiling and Auto-Reloading
	Auto-Compilation with -for-recomp
	Figure 7.1. Output of the -for-recomp xmlc option.
	Auto-Class Loading with -generate both
	Figure 7.2. Output of the -generate both xmlc option.

	Preparing the Application Environment for Auto-Recompilation
	File Location Requirements
	Configuration File Requirements
	Monitoring Auto-Compilation and Auto-Class Loading

	xmlcFactory at Runtime
	Auto-Recompilation for Non-Enhydra Environments

	Server-Side Includes
	Interfaces for Late-Binding Implementations

	XMLC Metadata
	Directives, Attributes, and Option Elements
	Table 7.2. XMLC Metadata Directives

	Examples of Directive Usages
	Slight Deviations Between Command Options and Metadata

	Building with Enhydra make Files
	
	Listing 7.2 ./src/SFA/presentation/Makefile
	Table 7.3. Enhydra make File Variables for XMLC Compilation

	Summary

	Chapter 8. HTML Presentations
	Leveraging HTML DOM Implementation
	
	Table 8.1. DOM Sub-Class Interfaces of DOM's Node Interface

	Dealing with Boolean Attributes
	Type-Safe Development

	Preparing for Examples
	Common DOM Operations
	When No Sub-DOM Is Available
	Querying a Node
	Gathering Nodes
	DOM Manipulation
	Gaining Access to Attributes
	XMLCUtil—A Little Help from XMLC

	Cloning and Templates
	Content Substitution
	Cloning for Stamping New Markup
	Listing 8.1 vendor/vendorInfo.java

	Flow of a Typical Cloning Operation
	Figure 8.1. Simple static-dynamic vendor detail page.

	Removing ids
	Options for Extreme Dynamic Manipulation

	Different Strokes
	Loosening id Bindings with getElementByID()

	Building Tables
	Static Tables with Dynamic Content
	Listing 8.2 vendor/VendorDetails.html
	Listing 8.3 vendor/VendorDetailsPresentation.java
	Figure 8.2. Simple static-dynamic vendor details page.

	Dynamic Tables, Content and All
	Figure 8.3. The revised simple static-dynamic vendor detail page.

	Dealing with Vestigial Templates
	Changing Attribute Values
	Wading Through In-Line Presentation Information

	Working with Stylesheets
	
	Listing 8.4 vendor/VendorListPresentation.java

	Working with Forms and Controls
	Controls and Access to Control Results
	Building a Dynamic Questionnaire Form
	The VendQuest Template
	Figure 8.4. The VendQuest template.
	Listing 8.5 vendQuest/Questionnaire.html
	Figure 8.5. The VendQuest template with mock content and HTML removed.

	The Business Object
	Listing 8.6 examples/business/SC.java

	The VendQuest Presentation Object
	HTML Controls
	Input Elements
	Table 8.2. Methods of HTMLInputElement
	Radio and Check Boxes
	Select/Option Menus
	Table 8.3. Additional Methods of HTMLSelectElement

	Error Checking
	textArea
	Table 8.4. Methods Introduced by HTMLTextAreaElement

	Working with the Document Head
	The VendQuest Presentation Object
	Listing 8.7 vendQuest/QuestionnairePresentation.java

	Working with JavaScript
	Using Hidden Fields
	Listing 8.8 Example of How to Pass Dynamic Information to a JavaScript Variable

	Generating Output
	XHTML
	Summary

	Chapter 9. Presentation Strategies
	A Presentation Architecture
	The Base Presentation Object
	The BasePO Class
	Table 9.1. BasePO Methods

	Flow of Control with BasePO
	initSessionData()
	Tracking Session

	handleEvent()
	getPage()

	Assembling Composite Views
	Strategies for Composite Views
	SSI
	Listing 9.1 Footer.ssi
	SSIs and XMLC's Runtime Auto-Class Loading

	Runtime Composite View Integration
	Figure 9.1. Typical menu-driven Web presentation.
	importNode and XMLC
	Figure 9.2. Strategy for extracting three tables from separate DOM templates.
	Figure 9.3. How importNode() copies MySFAContextBar's table into SFA.html.
	Listing 9.2 SFAPresentation.java
	Figure 9.4. The resulting page after integrating three DOM template views into one.

	SSIs Versus importNode()

	Interface-Implementations for ASPs and Skins
	
	Figure 9.5. The Gang of Four's bridge pattern.
	Figure 9.6. Selecting the IBM-branded page at runtime in ShowFloor.

	Generating Multiple Implementations
	Loading and Executing an Implementation
	Figure 9.7. Two implementations of HTML files supporting the same id attributes.

	Internationalization
	JavaScript and Internationalization

	Integrating Data Binding with XMLC
	Validating and Parsing the XML
	Listing 9.3 ./src/showFloor/VendQuest/VendQuest.dtd

	Using Zeus for XML Data Binding
	Generate Binding Logic with Zeus
	Building the Business Object
	Listing 9.4 ./src/examples/VendQuest/

	Summarizing XMLC Versus Zeus

	Summary

	Chapter 10. Servlet Web Applications
	Servlets and Web Applications
	Web Application Archive
	WAR Files
	web.xml for Configuration
	Table 10.1. Selected web.xml Elements

	Portable Enhydra XMLC
	XMLCContext for Web Application Servlet Development
	Controlling XMLC Runtime Features with web.xml
	param-name: xmlcReloading
	param-name: xmlcSessionURLEncoding
	param-name: xmlcLogging

	Building Web Application Servlets with Enhydra 3
	
	Listing 10.1 WelcomeServlet.java

	index.jsp for <welcome-file>
	Listing 10.2 Presentation/RedirectServer.java
	Listing 10.3 web.xml for the Stub Application

	Constructing the VendorCategory XMLC Servlet
	
	Figure 10.1. The Set Default Vendor Web presentation.
	Listing 10.4 VenCat.html
	Listing 10.5 VendorCategoryServlet.java

	Modifications

	Deploying XMLC WARs on Lutris EAS 4
	Web Application Source Tree Under EAS 4
	Initializing the EAS 4 Environment
	Adding the SFA.war to Lutris EAS
	Figure 10.2. EAS Web Admin Application and Connection Status Window.

	Ant, the Java/XML Alternative to make
	build.xml

	Deploying an XMLC WAR on BEA WebLogic
	WebLogic Installation
	Server File System
	config.xml
	Preparing the WebLogic Server for XMLC
	Launching the WebLogic Server
	Deployment Through the WebLogic Server Console
	Figure 10.3. Initial WebLogic Server Console.
	Figure 10.4. The WebLogic Server Console displaying a deployed SFA Web application.

	Running the VendorCategory Servlet

	Summary

	Chapter 11. Wireless Markup Presentations
	Wireless Domains
	WAP Phones, WAP Gateways
	Figure 11.1. WAP servers as gateways between the Internet and carrier networks.

	The Wireless Markup Language
	cHTML and i-mode

	Perusing the WML Language
	Event Bindings
	Table 11.1. WML Event Types

	User Tasks
	Table 11.2. WML Tasks

	Variables
	Formatting Elements
	Table 11.3. WML Formatting Elements

	The WML Development Environment, Kinks and All
	
	Figure 11.2. Openwave SDK and microbrowser emulator, displaying the Enhydra stub application.

	Forget Cookies
	Disable Document Caching
	And There's More…

	WML Template Generation with xmlc
	DOM API Extensions for WML Programming
	Table 11.4. WML DOM Element Interfaces

	Device Detection
	The mySFA Vendor Notes Application
	
	Listing 11.1 mysfa.wml

	The mySFA.wml DOM Template
	Listing 11.2 mysfa.wml

	The mySFA Application
	Listing 11.3 mySFAPresentation.java

	VoiceXML
	Voice Portals
	Figure 11.3. The role and functionality of voice portals.

	The VoiceXML Language
	Grammar
	XMLC Accessor Methods and VoiceXML
	mySFA as a VoiceXML Application
	Listing 11.4 mySFAwelcome.xml
	Listing 11.5 mySFAVendorNotes.xml

	Developing Without a VoiceXML DOM Extension

	Summary

	Chapter 12. Client-Server Development with J2ME and Flash
	Java 2 Micro Edition
	J2ME in the Wireless Space
	The J2ME Device Environment

	XML for J2ME Client/Server Communication
	
	Figure 12.1. XML-driven data linking the J2ME/Flash client and the application server.

	EnhydraME and XMLC

	Enhydra kXML
	A Lean XML Parser for J2ME
	Pull Versus Push Parser
	DOMs on Pilots?

	The ShowFloor Admin Application
	Defining FloorAdmin and BoothInfoXML
	Listing 12.1 BoothInfoXML.dtd

	Elements of the FloorAdmin Midlet
	Listing 12.2 FloorAdmin.java
	Listing 12.3 BoothInfoScreen.java
	Listing 12.4 The handleBooth Method

	Building a J2ME Application
	Compiling and Deploying the Application

	Flash
	Flash ActionScript

	Dynamic Graphics with SVG and XMLC
	SVG Versus Raster Images
	A Quick Introduction to the SVG Language
	Table 12.1. Selected SVG Elements

	A Demo Report Generator
	Listing 12.5 Report.html
	Listing 12.6 TableReport.svg
	Listing 12.7 TableReport.java
	Figure 12.2. Report with dynamically-generated SVG graph.

	Summary

	Chapter 13. Barracuda Presentation Framework
	XMLC: Where the Value Is
	A Presentation Framework for XMLC
	Barracuda and MVC
	Flow Versus Components
	Applying a GUI Abstraction
	A Component View of the DOM Template
	Layout by DOM

	A Collection of Capabilities
	
	Figure 13.1. Functional roles of Barracuda development at runtime.

	Barracuda Candy
	Component Model
	Basic Barracuda Components
	Figure 13.2. The complete set of Barracuda components, how they're subclassed from BComponent, and how some of them relate to one another.

	Binding Components to a DOM
	Figure 13.3. How an HTML template maps to hierarchical Barracuda components.
	Table 13.1. Barracuda Component Descriptions

	Example: VendorSpotlight
	Configuration
	HTML and Directives
	Listing 13.1 VendorSpotlight.html

	The Presentation Logic (Using BTemplate)
	Figure 13.4. Presentation of the VendorSpotlight application.
	Listing 13.2 VendorSpotlightServlet.java

	Accessing the Model Using Directives
	Rendering the Model
	More Than Strings
	Listing 13.3 NavBar.html

	Summarizing

	Directives
	Building Directive Iterations

	Localization
	Some Localization Strategies
	Java Resource Bundles
	XMLC Localization taskdef
	Matching Strings
	Loading Templates by Locale Using ViewContext
	Table 13.2. Other ViewCapabilities Methods

	Summary

	Appendix A. XMLC Command Line Options
	xmlc Command Options

	Appendix B. XMLC Metadata
	<compileOptions/> Elements
	<inputDocument> Elements
	<parser> Elements
	<html> Elements
	DOM Editing Elements
	<documentClass> Elements
	<javaCompiler> Elements

	Appendix C. The XMLObjectImpl Class
	Methods

	Appendix D. The Base Presentation Object
	The Base Presentation Object
	
	Listing D.1 BasePO.java

	Appendix E. References

